www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikMagnetische Feldstärke H
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Elektrotechnik" - Magnetische Feldstärke H
Magnetische Feldstärke H < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Magnetische Feldstärke H: Abhängigkeit zum Radius
Status: (Frage) beantwortet Status 
Datum: 20:21 Di 05.05.2009
Autor: ImminentMatt

Hier bin ich mir einfach nicht sicher, ob meine Lösung korrekt ist und zwar bin ich folgerndermaßen vorgegangen:

a)

1. Fall:

r [mm] \ge r_{0} [/mm]

ist ja die einfache Formel

[mm] H=\bruch{i}{2\pi r} [/mm]

2. Fall:

r < [mm] r_{0} [/mm]

Hier war ich mir nicht so recht sicher, aber ich bin davon ausgegangen:

Die Stärker vom magnetischen Feld (H,B) hängt ja auch von der Stromstärke i ab.
Die Stromstärke hängt hingegen von der Querschnittsfläche ab, welche in diesem Fall kleiner als vorher ist.

Daraus habe ich dann (s. Bild) folgendes gebastelt:
i für r < [mm] r_{0} =i*\bruch{r}{r_{0}} [/mm]

Ich hätte aber hier gerne noch Argumentationshilfe, da ich nicht denke, dass man anhand des bildes das legitim schlussfolgern darf. Mir ist aber nunmal nix besseres eingefallen und dieses i habe ich nun in obige formel eingesetzt und bekomme

H= [mm] \bruch{i*r}{2\pi r_{0}^{2}} [/mm]

Und bei letzterem Fall weiss ich nichtmal ob es richtig ist, aber mir ist nix anderes eingefallen.

b) Wäre dann quasi ein seichter Verlauf von 0 bis zum hochpunkt der bei [mm] r=r_{0} [/mm] liegt und dann wieder reziprok zum abstand zum leiter wieder abfällt.

Vielen Dank

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Magnetische Feldstärke H: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 06.05.2009
Autor: Rene

Hallo

Deine Berechnung ist richtig, unter der Annahme, dass der Strom homogen über den Leiterquerschnitt verteilt ist. Stichwort ist hier das Amper'sche Durchflutungsgesetz.

[mm] \integral_{\partial A}{\vec{H}\cdot d\vec{s}} = \iint\limits_{A}{\vec{J}\cdot d\vec{A}}[/mm]

Für eine Kreisquerschnitt kannst du schreiben [mm] ds = r\cdot d\varphi[/mm]
Daraus folgt zunächst

(1) [mm] \integral_{\partial A}{H\cdot ds} = \integral_{0}^{2\pi}{H(r)r\cdot d\varphi}=2\pi r H(r)[/mm]

Da der Strom homogen über den Querschnitt verteilt ist, gilt

[mm] J=\begin{cases} \frac{I}{\pi r_0^2}, & \mbox{für } r\leq r_0 \\ 0, & \mbox{für } r > r_0 \end{cases}[/mm]

Somit gilt für die rechte Seite der Gleichung

[mm]\iint\limits_{A}{\frac{I}{\pi r_0^2}\cdot dA}={\frac{I}{\pi r_0^2}\iint\limits_{A}{dA}[/mm]

In Polarkoordinaten
(2) [mm]{\frac{I}{\pi r_0^2}\integral_0^{2\pi}{\integral_0^R{r\cdot dr\cdot d\varphi}} = {\frac{2I}{r_0^2}\integral_0^R{r\cdot dr}[/mm]

Innerhalb des Leiters gilt [mm]R=r[/mm] und ausserhalb [mm]R=r_0[/mm], da [mm]J=0[/mm] für [mm]r>r_0[/mm]

Mit (1) und (2) gilt innerhalb des Leiters
[mm] 2\pi r H(r) = \frac{2I}{r_0^2}\integral_0^r{r\cdot dr} = \frac{I}{r_0^2}\cdot r^2[/mm]
[mm]H(r) = \frac{I}{2\pi r_0^2}\cdot r[/mm]

Mit (1) und (2) gilt ausserhalb des Leiters
[mm] 2\pi r H(r) = \frac{2I}{r_0^2}\integral_0^{r_0}{r\cdot dr} = \frac{I}{r_0^2}\cdot r_0^2=I[/mm]
Offensichtlich richtig, da ausserhalb des Leiters, der gesamte Strom eingeschlossen ist. (Analogie zum Gaußsches Gesetz)
[mm]H(r) = \frac{I}{2\pi r}[/mm]

Für den Verlauf der Feldstärke des Leiters mit Kreisquerscnitt gilt

[mm]H(r) = \begin{cases} \frac{I}{2\pi r_0^2}\cdot r, & \mbox{für } r\leq r_0\\ \frac{I}{2\pi r}, & \mbox{für } r>r_0\end{cases}[/mm]

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]