www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationMan zeige ... und berechne F'
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Man zeige ... und berechne F'
Man zeige ... und berechne F' < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Man zeige ... und berechne F': Was muss ich machen?
Status: (Frage) beantwortet Status 
Datum: 21:09 Mo 21.05.2007
Autor: peter_d

Aufgabe
[mm] $\text{Es seien } f\in C\left([a,b], \mathbb{R}\right) \text{ und } [/mm] g,\ [mm] h:=\in C^1\left([\alpha,\beta],[a,b]\right)\text{ . Ferner sei}$ [/mm]
[mm] $F:=[\alpha,beta]\to\mathbb{R}\text{\quad def. durch\quad} F(x):=\int_{g(x)}^{h(x)} [/mm] f(t) dt\ .$

[mm] $\text{Man zeige, dass } F\in C^1\left([\alpha,\beta], \mathbb{R}\right)\text{ und berechne } [/mm] F'\ .$

n'abend
Irgendwie steig ich durch diese Aufgabe nicht durch.
Kann mir einer bitte erklären bzw. einen Tipp geben was ich machen muss (bitte nicht sagen, es stehe in der Aufgabe, dann hätt ich nicht gefragt :)) bzw. wie ich vorgehen muss?

Danke und Gruß
Peter

        
Bezug
Man zeige ... und berechne F': Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Di 22.05.2007
Autor: angela.h.b.


> [mm]\text{Es seien } f\in C\left([a,b], \mathbb{R}\right) \text{ und } g,\ h:=\in C^1\left([\alpha,\beta],[a,b]\right)\text{ . Ferner sei}[/mm]
>  
> [mm]F:=[\alpha,beta]\to\mathbb{R}\text{\quad def. durch\quad} F(x):=\int_{g(x)}^{h(x)} f(t) dt\ .[/mm]
>  
> [mm]\text{Man zeige, dass } F\in C^1\left([\alpha,\beta], \mathbb{R}\right)\text{ und berechne } F'\ .[/mm]
>  

Hallo,

Du hast eine Funktion F, welche durch ein Integral erklärt ist.
Von dieser Funktion F sollst Du Eigenschaften herausfinden, bzw. sie beweisen.

Wenn jetzt im Integral irgendeine konkrete Funktion stünde, würde man vermutlich erstmal munter drauflosintegrieren.
So geht's hier nicht.

Wir haben f im Integral.
Über diese Funktion wissen wir, daß sie stetig ist [mm] ("f\in C\left([a,b], \mathbb{R}\right)"). [/mm]

Über stetige Funktionen von einem Intervall nach [mm] \IR [/mm] haben wir gelernt: sie haben eine Stammfunktion.

Also hat f eine Stammfunktion. Wir nennen sie G.
Was ist eine Stammfunktion von f? Eine diffbare Funktion mit G'=f.

So, wenn nun G unsere Stammfunktion ist, wie können wir dann das Integral, also F(x), schreiben?

Was sagt uns das?

Nun leite die Funktion auf beiden Seiten nach x ab. Kettenregel nicht vergessen und dran denken, daß G'=f ist.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]