www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMarkov Epidemie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Markov Epidemie
Markov Epidemie < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov Epidemie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:36 Di 22.03.2011
Autor: CraigSager

Aufgabe
In einer Population leben n Einwohner. Zum Zeitpunkt t = 0 bricht eine bis dato unbekannte
Krankheit aus, mit der sich n' der n Einwohner inzieren.
Steckt sich ein Einwohner an, so bricht die Krankheit erst nach einer gewissen Inkubationszeit
aus, in der seine Arbeitskraft unvermindert bleibt. Die Wahrscheinlichkeit,
dass die Krankheit nach einer Periode ausbricht, beträgt dabei q1 und die Wahrscheinlichkeit
für eine zweiperiodige Inkubationszeit q2 = 1-q1. Nach Ausbruch der Krankheit
überlebt ein Einwohner mit Wahrscheinlichkeit psurvive jeweils für eine weitere Periode.
Zudem ist die Arbeitskraft eines Einwohner nach Ausbruch der Krankheit eingeschränkt.
Tritt eine Zustandsänderung eines Einwohners auf, so wird davon ausgegangen, dass dieser
erst am Ende einer Periode Wirkung hat, der Einwohner während der Periode also
noch als dem alten Zustand zugehörig zu betrachten ist.
Ein gesunder Einwohner wird von jedem inzierten Einwohner mit der Wahrscheinlichkeit
pinfect (pinfect <= 1/n) angesteckt. Sind also bereits m Einwohner inziert, so steckt sich
jeder gesunde Einwohner mit der Wahrscheinlichkeit m pinfect an.

Modellieren Sie den Verlauf der Krankheit als homogene Markov-Kette und beschreiben
Sie Ihre Modellierung.

Wenn ich den Zustandsraum entsprechend erweitere damit die Markov-eigenschaft erfüllt bleibt explodiert die Größe der Übergangsmatrix.

Mit (Xt,Yt,Zt) - Xt Gesunde, Yt alle Infektionsüberträger, Z = t also einer künstlichen Zeitachse könnte man es modellieren aber wie kann man dann eine Aussage über die Verteilung nach t perioden treffen?

Wie kann man das mit einer bivariaten (diskreten) Markov-Kette modellieren ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Markov Epidemie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 26.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]