www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMarkov Ketten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Markov Ketten
Markov Ketten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 05.10.2010
Autor: superstar

Aufgabe
Ein Wähler, der bei der Wahl a gewählt hat, wählt bei der nächsten Wahl mit der Wahrscheinlichkeit 0,4 wieder a, mit wkeit 0,3 Partei b und mit wkeit 0,3 Partei c. Wenn er b gewählt hat, wählt a, b und c mit der wkeit 0,2 bzw. 0,5 bzw. 0,3. Wenn er c gewählt hat, wählt er a, b und c mit der wkeit 0,3 bzw. 0,2 bzw. 0,5.
Gibt es hierzu eine Gleichgewichtsverteilung? Wenn ja, dann bestimmen Sie den hierzu gehörenden Vektor [mm] \pi_1 \pi_2 [/mm] und [mm] \pi_3 [/mm]

Ich übe gerade Stochastik und bin bei den Markov-Ketten hängen geblieben. Kann mit jemand beim Lösen dieser Aufgabe helfen?
Ich habe mir das in einen Übergangsgraph gemalt, weiß aber jetzt nicht weiter. Ein Tipp wäre super.
LG

        
Bezug
Markov Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Di 05.10.2010
Autor: Niladhoc

Hallo,

die Aufgabenstellung lässt sich sehr gut in Matrizenform darstellen!

lg

Bezug
                
Bezug
Markov Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Di 05.10.2010
Autor: superstar

Also ich habe als Matrix:
[mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } [/mm]
Ich dachte, das wäre schon meine Übergangsmatrix, aber ich habe gelesen, dass sie es nicht sei. Jetzt bi ich verwirrt.
Wie geht es denn jetzt weiter?
LG

Bezug
                        
Bezug
Markov Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Di 05.10.2010
Autor: Niladhoc


Mit [mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } *\vektor{ a \\ b\\ c} [/mm] kommt auch nicht das Richtige raus!

Danach jedenfalls musst du das zugehörige []Eigenwertproblem lösen. Probiers mal!

Bezug
                                
Bezug
Markov Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Di 05.10.2010
Autor: superstar

Ich stehe total auf dem Schlauch. Ich habe jetzt für die Matrix den Eigenwert von 1 raus und den Eigenvektor (1,1,1). Aber wie geht es jetzt weiter?

Bezug
                                        
Bezug
Markov Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Di 05.10.2010
Autor: Niladhoc


> Ich stehe total auf dem Schlauch. Ich habe jetzt für die
> Matrix den Eigenwert von 1 raus und den Eigenvektor
> (1,1,1).

Schon mal richtig

> Aber wie geht es jetzt weiter?

Du hattest wohl keine lineare Algebra - das ist das Ergebnis. [mm] \vektor{ a\\ b\\ c}= \vektor{ 1\\ 1\\ 1} [/mm] und wird durch die Abbildung (ausgeführt durch die Matrizenmultiplikation) auf Eigenwert*Eigenvektor abgebildet.
Du musst dir unbedingt die lineare Algebra anschauen!

lg

Bezug
                                                
Bezug
Markov Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Di 05.10.2010
Autor: superstar

Also, die Antwort zu der Frage ist jetzt:
Ja, es gibt eine Gleichgewichtsverteilung, weil
[mm] \summe_{i=1}^{n}\pi_1 [/mm] =1
gilt? Und durch Eigenwert, Eigenvektor etc... habe ich so meine [mm] \lambda_1, \lambda_2, \lambda_3 [/mm] erhalten.
Ist das richtig?
Und vielen Dank für deine Hilfe.

Bezug
                                                        
Bezug
Markov Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 05.10.2010
Autor: Niladhoc

Matrizen sind so ziemlich das Wichtigste in der angewandten Mathematik!

------ EDIT -----

Matrizenmultiplikation bedeutet: Zeilen mal Spalten.
[mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } *\vektor{a \\ b\\ c} [/mm] = [mm] \vektor{ 0,4*a+0,2*b+0,3*c \\ 0,3*a+0,5*b+0,2*c \\ 0,3*a+0,3*b+0,5*c}, [/mm] also nur eine neue Schreibweise für das was dein Baum dir sagen müsste.

So du hast jetzt die Eigenwerte der Matrix ausgerechnet - die braucht man, um Vektoren zu finden, die auf Vielfache ihrer selbst abgebildet werden. Du suchst ja einen Vektor, der gleich bleibt, wenn er durch "Neuwahl" verändert wird - wie von der Matrix beschrieben.

Dazu sucht man - so geht es am schnellsten - die Eigenwerte der Matrix. Davon müsste für dein Beispiel nur einer gleich eins sein. Wenn mehrere verschiedene Eigenwerte auftreten, dann hat jeder von ihnen zumindest einen dazugehörigen Eigenvektor, der auf dieses Vielfache abgebildet wird. Treten Eigenwerte (deine eins drei mal), dann können drei verschiedene Eigenvektoren existieren, es können aber auch weniger sein - doch mindestens einer.
(Das wären alles Lösungen deines Problems).

Nun hast du deine drei Eigenwerte eins heraus und kannst das Problem
[mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } *\vektor{a \\ b\\ c}=1*\vektor{a \\ b\\ c} [/mm] umstellen:
[mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } *\vektor{a \\ b\\ c}-\pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } *\vektor{a \\ b\\ c}=0 [/mm]
[mm] \pmat{ 0,4-1 & 0,2 & 0,3 \\ 0,3 & 0,5-1 & 0,2 \\ 0,3 & 0,3 & 0,5-1 } *\vektor{a \\ b\\ c}=0 [/mm]
GLS lösen und du erhältst den zugehörigen Eigenvektor zum Eigenwert.
Das ist deine Lösung [mm] \vektor{\pi_1 \\ \pi_2 \\ \pi_3} [/mm] (||v||=1 natürlich), mach dir aber auch klar warum!

lg

Bezug
                                                        
Bezug
Markov Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Di 05.10.2010
Autor: Teufel

Hi!

Also um alles nochmal richtig zu machen: Deine Matrix am Anfang war schon richtig. Wenn du Eigenwerte berechnest, kommst du auf 1, [mm] \bruch{1}{5} [/mm] und nochmal [mm] \bruch{1}{5}. [/mm] Nur 1 ist interessant, weil die Eigenvektoren zu [mm] \bruch{1}{5} [/mm] negative Einträge haben.

Als Eigenvektor zu 1 solltest du (1, [mm] \bruch{21}{19}, \bruch{24}{19}) [/mm] erhalten, oder ein Vielfaches davon. Dies ist allerdings noch nicht deine stationäre Verteilung, weil die Summe der 3 Einträge nicht 1 ist. Daher musst du den Vektor nur noch so kürzen, sodass die Summe der Einträge =1 ist und du bist fertig.

[anon] Teufel

Bezug
                                                                
Bezug
Markov Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Mi 06.10.2010
Autor: superstar

Vielen Dank. Jetzt ist es mir klar geworden. Ich habe leider keine Lösung dazu, aber ich hoffe, dass das stimmt, wie ihr es gesagt habt.

Bezug
                        
Bezug
Markov Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Di 05.10.2010
Autor: Teufel

Hi!

Ich würde sagen, dass diese Matrix stimmt. In der obersten Zeile stehen z.B. die Übergangswahrscheinlichkeiten [mm] $A\to [/mm] A$, [mm] $B\to [/mm] A$ und $C [mm] \to [/mm] A$ und so muss das ja auch sein. 2. und 3. Zeile hast du genau so gemacht, sollte also alles stimmen.

Welche wird denn als Lösung angegeben? Deine Matrix transponiert? Diese wäre falsch.


Edit:
Kann es vielleicht sein, dass ihr Vektoren von links an die Matrix multipliziert? Also $(a,b,c)*A$ schreibt? Dann müsstest du deine Matrix transponieren. Wenn ihr aber [mm] $A*\vektor{a \\ b \\ c}$, [/mm] dann stimmt deine Matrix. Die 2. Form bevorzuge ich auch, weil man dann einfach direkt mit Eigenwertberechnungen etc. loslegen kann. Bei der anderen Form muss man A erst nochmal transponieren, weil die übliche Eigenwertberechnung ja einen Eigenwert [mm] \lambda [/mm] und einen Vektor v liefert, sodass [mm] $Av=\lambda [/mm] v$ ist und nicht [mm] $vA=\lambda [/mm] v$.

[anon] Teufel

Bezug
                                
Bezug
Markov Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Di 05.10.2010
Autor: Niladhoc

Hallo,

In der Aufgabe steht:

"Ein Wähler, der bei der Wahl a gewählt hat, wählt bei der nächsten Wahl mit der Wahrscheinlichkeit 0,4 wieder a, mit wkeit 0,3 Partei b und mit wkeit 0,3 Partei c. Wenn er b gewählt hat, wählt a, b und c mit der wkeit 0,2 bzw. 0,5 bzw. 0,3. Wenn er c gewählt hat, wählt er a, b und c mit der wkeit 0,3 bzw. 0,2 bzw. 0,5."
Das heißt: [mm] 1*a\to [/mm] 0,4a+0,3b+0,3c
           [mm] 1*b\to [/mm] 0,2a+0,5b+0.3c
           [mm] 1*c\to [/mm] 0.3a+0.2b+0.5c
aber auch [mm] a_{n+1}= [/mm] 0.4a+0.2b+0.3*c
Die Matrix, die oben steht( [mm] \pmat{ 0,4 & 0,2 & 0,3 \\ 0,3 & 0,5 & 0,2 \\ 0,3 & 0,3 & 0,5 } [/mm]  ) ist die eigentlich transponierte, so wie ich das sehe.

lg

Bezug
                                        
Bezug
Markov Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Di 05.10.2010
Autor: Teufel

Hi!

Ja, genau, [mm] a_{n+1}=0,4a_n+0,2b_n+0,3c_n. [/mm] Und das kriegt man nur, wenn die 1. Zeile der Matrix 0,4 0,2 0,3 lautet!

Wenn die 1. Zeile 0,4 0,3 0,3 lautet, dann erhält man doch für die 1. Komponente des Ergebnisvektors, also [mm] a_{n+1}, [/mm] 0,4a+0,3b+0,3c, was man nicht will.

Daher ist die zuerst genannte Matrix eigentlich schon ok so.

Oder wenn man sich deine Gleichung nimmt:
[mm] \pmat{ 0,4 & 0,3 & 0,3 \\ 0,2 & 0,5 & 0,3\\ 0,3 & 0,2 & 0,5 } *\vektor{a \\ b\\ c} [/mm] = [mm] \vektor{ 0,4*a+0,3*b+0,3*c \\ 0,2*a+0,5*b+0,3*c \\ 0,3*a+0,2*b+0,5*c} [/mm]
Dann stimmt doch schon die 1. Zeile nicht mit 0,4a+0,2b+0,3c überein!

[anon] Teufel

Bezug
                                                
Bezug
Markov Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Di 05.10.2010
Autor: Niladhoc

Hallo,

da bin ich wohl wieder verwirrt gewesen...
Sry und vielen Dank, ich werde mich wieder zurückhalten.

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]