www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMaß der Hyperebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Maß der Hyperebene
Maß der Hyperebene < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß der Hyperebene: Definitionskonflikt
Status: (Frage) beantwortet Status 
Datum: 20:01 So 31.10.2004
Autor: Micha

Hallo!
Folgende Aufgabe ist gegeben: "Beweisen Sie, dass [mm] $\IR \subset \IR^2$ [/mm] eine [mm] $\mu_2$-Nullmenge [/mm] ist."

Wir hatten dabei [mm] $\mu_2$ [/mm] als Produkt des [mm] $\mu_1$-Lebesgue-Maß [/mm] definiert also für [mm]I \in I(\IR^2): \mu_2(I) = \mu_1(I_1) * \mu_1(I_2)[/mm]

Nun ist das bei der [mm] $\IR$-Hyperebene [/mm] Folgendes:
[mm] $\IR \subset \IR^2 \Rightarrow M:=\{(x,y) \in \IR^2 | y= a, a \in \IR\}$ [/mm]

Dann ist [mm] $\mu_2(M) [/mm] = [mm] \mu_1(\IR) [/mm] * [mm] \mu_1(\{a\}) [/mm] = [mm] \infty [/mm] * 0$
Jetzt kommt mein Problem: Der Bröcker (Analysis 2, 2. Aufl.) definiert in der Maßtheorie den Ausdruck [mm] $\infty [/mm] * 0 = 0$. Leider hatten wir in der Vorlesung eine andere Herangehensweise und haben uns deshalb mit solchen Ausdrücken nicht beschäftigt. Wir sind über die Integration von Integralen herangegangen. Wenn ich es verwenden dürfte wäre ich aber fertig. Dann ist nämlich [mm]\mu_2(M)=0[/mm] und dann wäre gezeigt, dass es eine [mm] $\mu_2$-Nullmenge [/mm] ist.

Weiss hier jemand einen Rat oder soll ich das einfach so aufschreiben? Ich könnte es ja auch als Quelle mit angeben aber letztlich hat es Herr Bröcker für seine Zwecke so definiert. Es ist ja kein Satz oder sowas. :-(

Gruß, Micha

        
Bezug
Maß der Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 01.11.2004
Autor: Stefan

Lieber Micha!

Ich würde es wie folgt aufschreiben:

Offenbar gilt:

$M = [mm] \bigcup_{n \in \IN} M_n$ [/mm]

mit

[mm] $M_n [/mm] = [-n,n] [mm] \times \{a\}$ [/mm]   für alle $n [mm] \in \IN$. [/mm]

Weiterhin ist die Folge [mm] $(M_n)_{n \in \IN}$ [/mm] isoton, d.h. es gilt:

[mm] $M_n \subset M_{n+1}$ [/mm]    für alle $n [mm] \in \IN$. [/mm]

Daher folgt aus der Stetigkeit des Maßes [mm] $\mu_2$ [/mm] von unten:

[mm] $\mu_2(M) [/mm] = [mm] \lim\limits_{n \to \infty} \mu_2(M_n)$, [/mm]

und somit wegen

[mm] $\mu_2(M_n) [/mm] = [mm] \mu_1([-n,n]) \cdot \mu_1(\{a\}) [/mm] = 2n [mm] \cdot [/mm] 0 = 0$

die Behauptung:

[mm] $\mu_2(M) [/mm] = [mm] \lim\limits_{n \to \infty} [/mm] 0 = 0$.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]