www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteMatric in C
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Matric in C
Matric in C < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matric in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 28.06.2007
Autor: nix19

Aufgabe
Diagonalisieren Sie die Matrc [mm] G=\pmat{ 2 & 0&0&0 \\ 0 & 2&0&0\\1&-2&0&-1\\2&-4&1&0 } [/mm] in [mm] \IC [/mm]

Mich irritiert das [mm] \IC. [/mm] Ich weiß nicht wie ich damit rechnen muss. kan mir das vielleicht einer mal für die eigenwerte zeigen, das wäre super lieb und nett.

        
Bezug
Matric in C: Antwort
Status: (Antwort) fertig Status 
Datum: 02:31 Fr 29.06.2007
Autor: schachuzipus

Hallo Nadine,

nicht irritieren lassen ;-)

Setze an wie immer, bestimme [mm] $det(A-\lambda\cdot{}\mathbb{E}_4)$ [/mm]

also [mm] det\pmat{ 2-\lambda & 0&0&0 \\ 0 & 2-\lambda&0&0\\1&-2&-\lambda&-1\\2&-4&1&-\lambda} [/mm]

Das Biest kannste schnell nach der ersten Zeile entwickeln mit Laplace und dann mit Sarrus.

Als charakteristisches Polynom sollte dann rauskommen:

[mm] $cp_A(\lambda)=(2-\lambda)(-\lambda^3+2\lambda^2-\lambda+2)$ [/mm]

Eine Nullstelle ist offensichtlich [mm] \lambda_1=2. [/mm]

Eine weitere kannst du schnell erraten: [mm] \lambda_2=2 [/mm]

Dann mach ne Polynomdivision [mm] (-\lambda^3+2\lambda^2-\lambda+2):(\lambda-2)=-\lambda^2-1 [/mm]

Und [mm] -\lambda^2-1=0\gdw\lambda^2=-1\gdw\lambda=\pm [/mm] i

Damit hast du deine 4 Eigenwerte.

Nun mach dich mal selber an die Berechnung der Eigenvektoren...

Viel Spaß ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]