www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Matrix
Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 12.07.2004
Autor: studentin

Hallo alle! hier ist wieder eine Aufgabe bei der ich nicht weiter komme!

Stelle die lineare Abb. l : IR²-->IR³ aus Aufgabe 1  nicht bzgl. der kannonischen Basen, sondern bzgl. B = {(1,1), (-1,1)} und C = {(0,1,1), (1,0,1), (1,1,0)} als Matrix dar Vergleiche die Ergebnisse.

PS. Die A.1 lautete: Sei l : IR²-->IR³ linear mit l (1,2) = (1,2,3) und l (2,1)=(3,2,1). Bestimme eine reelle 3*2 - Matrix A mit l=lA.  rausgekriegt habe ich: A = [mm] \begin{pmatrix} 5/3 & -1/3 \\ 2/3 & 2/3 \\ -1/3 & 5/3 \end{pmatrix} [/mm]

Wer kann mir bei der Aufgabe helfen?

Ich habe diese Frage in keinem weiteren Forum gestellt.




        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 13.07.2004
Autor: Paulus

Hallo Kati

> Hallo alle! hier ist wieder eine Aufgabe bei der ich nicht
> weiter komme!
>  
> Stelle die lineare Abb. l : IR²-->IR³ aus Aufgabe 1  nicht
> bzgl. der kannonischen Basen, sondern bzgl. B = {(1,1),
> (-1,1)} und C = {(0,1,1), (1,0,1), (1,1,0)} als Matrix dar
> Vergleiche die Ergebnisse.
>  
> PS. Die A.1 lautete: Sei l : IR²-->IR³ linear mit l (1,2) =
> (1,2,3) und l (2,1)=(3,2,1). Bestimme eine reelle 3*2 -
> Matrix A mit l=lA.  rausgekriegt habe ich: A =
> [mm]\begin{pmatrix} 5/3 & -1/3 \\ 2/3 & 2/3 \\ -1/3 & 5/3 \end{pmatrix}[/mm]
>

[ok] Das habe ich auch erhalten.

Ich nehme an, dass ihr in der Vorlesung oder im Skript die folgende Beziehung hergeleitet habt:

Sei $T$ die Transformationsmatrix für eine Basistransformation in $V$ und
sei $S$ die Transformationsmatrix für eine Basistransformation in $W$

Ferner sei $A$ die Matrix für eine lineare Abbildung von $V$ in $W$ bezüglich der Basen in $V$ und $W$, während $B$ die Matrix der gleichen Abbildung bezüglich der neuen Basen sei. Dann gilt die Beziehung:
$B$ = [mm] $S^{-1}AT$ [/mm]

Kannst du bitte mal die Matrizen $T$, $S$ und wenn möglich [mm] $S^{-1}$ [/mm] eruieren? Falls du Schwierigkeiten damit hast helfe ich dir natürlich gerne dabei! (Tipp: die Koordiunaten der neuen Basisvektoren stehen als Kolonnen in der jeweiligen Transformationsmatrix.)

Die Matrix $A$ hast du ja schon. Du brauchst also $B$ nur noch nach obiger Formel zu berechnen. :-)

Mit lieben Grüssen
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]