www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenMatrix Lineare Abbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Matrix Lineare Abbildung
Matrix Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix Lineare Abbildung: Idee
Status: (Frage) beantwortet Status 
Datum: 12:44 Sa 27.06.2009
Autor: Uebungistalles

Aufgabe
[mm] \IR^{2} [/mm] sei mit der Standardbasis [mm] \{\vektor{1 \\ 0} \vektor{0 \\ 1} \} [/mm] versehen. Man gebe die Matrizen der folgenden linearen Abbildungen an.

a) Drehung um den Winkel 90 Grad im Gegenuhrzeigersinn um [mm] \vektor{0 \\ 0} [/mm]
b) Eine entsprechende Drehung um 45 Grad.
c) Spiegelung an der Winkelhalbierenden des 1. Quadranten (also span [mm] \{\vektor{1 \\ 1} \} [/mm]
d) Spiegelung an der [mm] x_{2}-Achse [/mm]

Ich weiß leider gar nicht wie ich damit beginnen soll , kann mir jemand vielleicht den ein oder anderen Zugang ermöglichen?

        
Bezug
Matrix Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 27.06.2009
Autor: weightgainer

Wenn du garnichts über die Abbildungen weißt, kannst du mit dem allgemeinen Ansatz starten, der da heißt:

[mm]\vec{x}' = A*\vec{x}+\vec{v}[/mm]

Dabei ist A die Abbildungsmatrix und [mm] \vec{v} [/mm] ein Verschiebungsvektor.

Wenn du schon weißt, dass es sich um eine lineare Abbildung handelt, kannst du den Verschiebungsvektor weglassen (das ist dann der Nullvektor).
Ob du den brauchst, kannst du einfach testen, indem du den Nullvektor abbildest. Wenn der bei der Abbildung auf sich selbst abgebildet wird, brauchst du die Verschiebung nicht (bei dir also garnicht).

Du brauchst also nur noch: [mm]\vec{x}' = \pmat{ a & b \\ c & d }*\vec{x}[/mm]

Offenbar hast du 4 Unbekannte - um die zu berechnen, brauchst du 4 "Informationen" (Gleichungen). Du kannst dir also jetzt einfach Punkte nehmen, deren Bildpunkte ermitteln (ohne die Abbildungsmatrix) und in diese Gleichung einsetzen, und zwar so viele, wie du brauchst, um genügend viele Gleichungen zu bekommen.

Für die a) und b) würde ich aber fast schon empfehlen, dass du das einmal rechnest für eine Drehung um einen beliebigen Winkel. Die Bildpunkte bekommst du dann über einfache geometrische Beziehungen, wenn du dir mal ein Bildchen gemalt hast.
Was da herauskommen soll, findest du übrigens in vielen Büchern und natürlich auch im Internet - dann hast du eine Kontrollmöglichkeit für deine Ergebnisse/Ideen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]