www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix Rechnen Gesetze
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrix Rechnen Gesetze
Matrix Rechnen Gesetze < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix Rechnen Gesetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 29.10.2007
Autor: pleaselook

Aufgabe
[mm] A,B\in \IR^{n,n} [/mm]
(1) Wenn AB=0, dann A=0 oder B=0.
(2) Wenn [mm] A^2=0, [/mm] dann A=0.
Welche der Aussagen sind richtig? Sonst Gegenbeispiel angeben.

Hmm. Da bin ich mir nicht sicher. Also (1) kann man doch bestimmt auch anders hinbekommen, oder?

Für einige kurze Bemerkungen wäre ich dankbar.


        
Bezug
Matrix Rechnen Gesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mo 29.10.2007
Autor: pleaselook

also für (1) hab ich nen gegenbeisp. gefunden. für (2) gibts aber keins, oder?


Bezug
                
Bezug
Matrix Rechnen Gesetze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Mo 29.10.2007
Autor: Somebody


> also für (1) hab ich nen gegenbeisp. gefunden. für (2)
> gibts aber keins, oder?

Doch  $A := [mm] \pmat{0&0\\1&0}$. [/mm] Dann gilt zwar [mm] $A^2=0$, [/mm] aber [mm] $A\neq [/mm] 0$.


Bezug
        
Bezug
Matrix Rechnen Gesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mo 29.10.2007
Autor: Somebody


> [mm]A,B\in \IR^{n,n}[/mm]
>  (1) Wenn AB=0, dann A=0 oder B=0.
>  (2) Wenn [mm]A^2=0,[/mm] dann A=0.
>  Welche der Aussagen sind richtig? Sonst Gegenbeispiel
> angeben.
>  Hmm. Da bin ich mir nicht sicher. Also (1) kann man doch
> bestimmt auch anders hinbekommen, oder?
>
> Für einige kurze Bemerkungen wäre ich dankbar.

Zunächst halbierst Du Deine Arbeit: Wenn Du ein Gegenbeispiel zu (2) hast, dann hast Du auch ein Gegenbeispiel zu (1).  

Dann: Versuche ein Gegenbeispiel zu (2) mit Hilfe einer geeigneten Abbildungsmatrix $A$ eines Endomorphismus des [mm] $\IR^2$ [/mm] zu finden. (Z.B. eine Kombination von Drehung und Projektion: die bei zweimaliger Anwendung die Nullabbildung ergibt. Ich schreibe diese Matrix nun nicht hin, weil es ganz gut ist, wenn Du einen Versuch machst, eine solche Abbildungsmatrix selbst zu finden.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]