www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenMatrix, direkte Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Matrix, direkte Summe
Matrix, direkte Summe < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix, direkte Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Di 03.05.2011
Autor: Heatshawk

Aufgabe
Sei [mm] \varphi [/mm] Endomorphismus von V -> V und dim V = n

Seien weiter U und V zwei phi invariante Unterräume von V mit V = U [mm] \oplus [/mm] W.

zu zeigen: [mm] det(\varphi) [/mm] = [mm] det(\varphi [/mm] "Eingeschränkt auf U") * [mm] det(\varphi [/mm] "Eingeschränkt auf W"

Ich weiß also V = U [mm] \oplus [/mm] W. und U,W sind phi invariant.

Ich muss um die Determinanten vergleichen zu können ja die Matrix bilden.
Jeder Endomorphismus besitzt eine Darstellungsmatrix.

Da U und W direkte Summe sind, stehen oben links Einträge und darunter und rechts davon Nullen, sowie unten rechts ein Block mit Einträgen, oder nicht?
Da [mm] \varphi(u) [/mm] wieder in U enthalten ist und damit nur durch Basisvektoren aus U dargestellt werden kann.
Genauso [mm] \varphi(w). [/mm]
Jetzt muss ich nur noch zeigen, dass diese Blockungen die Darstellungsmatrizen von [mm] \varphi [/mm] "Eingeschränkt auf U" bzw. W sind.

Wie mache ich das am besten?

Leider wusste ich nicht wie ich das Eingeschränkt-Symbol hierim Editor benutze.

Schonmal Danke

        
Bezug
Matrix, direkte Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Mi 04.05.2011
Autor: kamaleonti

Moin Heatshawk,
> Sei [mm]\varphi[/mm] Endomorphismus von V -> V und dim V = n
>  
> Seien weiter U und V zwei phi invariante Unterräume von V
> mit V = U [mm]\oplus[/mm] W.
>  
> zu zeigen: [mm]det(\varphi)[/mm] = [mm]det(\varphi[/mm] "Eingeschränkt auf
> U") * [mm]det(\varphi[/mm] "Eingeschränkt auf W"
>  Ich weiß also V = U [mm]\oplus[/mm] W. und U,W sind phi
> invariant.
>  
> Ich muss um die Determinanten vergleichen zu können ja die
> Matrix bilden.
>  Jeder Endomorphismus besitzt eine Darstellungsmatrix.
>  
> Da U und W direkte Summe sind, stehen oben links Einträge
> und darunter und rechts davon Nullen, sowie unten rechts
> ein Block mit Einträgen, oder nicht?
>  Da [mm]\varphi(u)[/mm] wieder in U enthalten ist und damit nur
> durch Basisvektoren aus U dargestellt werden kann.  Genauso [mm]\varphi(w).[/mm]

Richtig, man sagt auch, die Matrix hat Blockgestalt.
Das alles gilt, wenn du als Basis für die Darstellungsmatrix entsprechend erst Basiselemente von U: [mm] u_1,\ldots,u_r [/mm] und dann Basiselemente von W: [mm] w_1,\ldots,w_{n-r} [/mm] nimmst (o.E. erst Elemente von U dann von W).

>  Jetzt muss ich nur noch zeigen, dass diese Blockungen die
> Darstellungsmatrizen von [mm]\varphi[/mm] "Eingeschränkt auf U"
> bzw. W sind.

Davon bist du gar nicht weit entfernt. Etwa so für [mm] \varphi_{|U}: [/mm]
Es gilt [mm] \varphi(U)\subset [/mm] U. Insbesondere lassen sich die Bilder der Basisvektoren von U wieder als Linearkombination dieser darstellen:
[mm] \qquad $f(u_i)=\sum_{j=1}^r\lambda_j u_j,\quad 1\leq i\leq [/mm] r$
Die Darstellungsmatrix ist also eine [mm] r\times [/mm] r Matrix und zwar genau diejenige die oben links in der Blockgestalt der Darstellungsmatrix von [mm] \varphi [/mm] steht. (da sind die [mm] u_i [/mm] auch die ersten r Elemente!)

>  
> Wie mache ich das am besten?
>  
> Leider wusste ich nicht wie ich das Eingeschränkt-Symbol
> hierim Editor benutze.
>  
> Schonmal Danke

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]