www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix im Komplexen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Matrix im Komplexen
Matrix im Komplexen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix im Komplexen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:13 Mi 31.05.2006
Autor: Tanja1985

Aufgabe
a) Sei p [mm] \in \IC[/mm] [t] ein Polynom mit reellen Koeffizienten und z [mm] \in \IC [/mm] eine Nullstelle von p (d.h. p^*(z)=0). Zeigen sie, dass dann auch "z quer" eine Nullstelle von p ist.

b) Zeigen sie, dass für eine unitäre Matix A [mm] \in U_{n}\IC [/mm] gilt:  |det A  |= 1.


c) Sei A [mm] \in \IC^{n*n} [/mm] eine Matrix mit reellen Einträgen und [mm] \lambda [/mm] ein Eigenwert von A zum Eigenvektor v. Zeigen sie, dass dann auch " [mm] \lambda [/mm] quer" ein Eigenwert von A ist.

Hallo ich habe ein Problem mit der obigen Aufgabe, und zwar weiß ich überhaupt nicht, wie ich an die Aufgabe rangehen soll. Mir fehlt irgendwie bei allen drei Teilen eine Idee. Kann mir jemand von euch helfen?

Liebe Grüße

        
Bezug
Matrix im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 31.05.2006
Autor: felixf

Hallo!

> a) Sei p [mm]\in \IC[/mm] [t]ein Polynom mit reellen Koeffizienten und z [mm]\in \IC[/mm] eine Nullstelle von p (d.h. p^*(z)=0). Zeigen sie, dass dann auch "z quer" eine Nullstelle von p ist.

Einfach nachrechnen. Benutze dafuer [mm] $\overline{a + b} [/mm] = [mm] \overline{a} [/mm] + [mm] \overline{b}$, $\overline{a \cdot b} [/mm] = [mm] \overline{a} \cdot \overline{b}$ [/mm] und [mm] $\overline{r} [/mm] = r$ fuer alle $a, b [mm] \in \IC$, [/mm] $r [mm] \in \IR$. [/mm]

> b) Zeigen sie, dass für eine unitäre Matix A [mm]\in U_{n}\IC[/mm] gilt:  |det A  |= 1.

Die Determinante ist das Produkt aller Eigenwerte (schau dir das charakteristische Polynom an und faktorisier es als Linearfaktoren). Es reicht also zu zeigen, dass jeder Eigenwert Betrag 1 hat. Das bekommst du sofort mit der Eigenschaft `unitaer' hin, also mit Hilfe des Skalarproduktes.

> c) Sei A [mm]\in \IC^{n*n}[/mm] eine Matrix mit reellen Einträgen und [mm]\lambda[/mm] ein Eigenwert von A zum Eigenvektor v. Zeigen sie, dass dann auch " [mm]\lambda[/mm] quer" ein Eigenwert von A ist.

Benutze a).

LG Felix


Bezug
                
Bezug
Matrix im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 31.05.2006
Autor: Tanja1985

hallo, danke erst einmal. also bei b) und c) bin ich jetzt weiter gekommen, nur bei a) weiß ich nicht, wie ich die Eigenschaften des "Querens" da  einbringen soll bzw. wie ich es nachrechnen soll, da ich ja kein Polynom gegeben habe, wo ich etwas einsetzten könnte.


LG Tanja

Bezug
                        
Bezug
Matrix im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mi 31.05.2006
Autor: piet.t

Hallo Tanja,

> hallo, danke erst einmal. also bei b) und c) bin ich jetzt
> weiter gekommen, nur bei a) weiß ich nicht, wie ich die
> Eigenschaften des "Querens" da  einbringen soll bzw. wie
> ich es nachrechnen soll, da ich ja kein Polynom gegeben
> habe, wo ich etwas einsetzten könnte.
>  

Wenn keines gegeben ist, dann nehmen wir halt ein allgemeines:
[mm]p(x) = \sum_{i=0}^n a_ix^i[/mm]
wobei [mm] a_i\in\IR [/mm] (reelle Koeffizienten).
Jetzt sei [mm] x_0 [/mm] eine Nullstelle des Polynoms, dann kann man ja [mm] \bar{x_0} [/mm] in das Polynom einsetzen und wie Felix schon geagt hat einfach mal ausrechnen, was rauskommt....

Gruß

piet

>
> LG Tanja


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]