www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix n x n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrix n x n
Matrix n x n < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix n x n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 16.01.2013
Autor: piriyaie

Aufgabe
[mm] A_{n} [/mm] = [mm] \pmat{ 1 & 1 & 0 & 0 & ... & 0 \\ 1 & 2 & 1 & 0 & ... \\ 0 & 1 & 2 & 1 & ... \\ 0 & 0 & 1 & 2 & ... & 0 \\ ... & ... & ... & ... & ... & 1 \\ 0 & ... & ... & 0 & 1 & 2 } [/mm]

Hallo,

die obige Matrix ist mir gegeben.

Ich soll zeigen, dass [mm] det(A_{n}) [/mm] = [mm] 2*det(A_{n-1}) [/mm] - [mm] det(A_{n-2}) [/mm] ist für n > 2.

Mir ist irgendwie klar, dass ich hier den Laplaceschen Entwicklungssatz anwenden muss. Aber wie genau verstehe ich ned :-(

Das ist eine total doofe Aufgabe.

könnte mir jemand erklären wie ich solche aufgaben löse???

danke schonmal.

grüße
ali

        
Bezug
Matrix n x n: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 16.01.2013
Autor: Al-Chwarizmi


> [mm]A_{n}[/mm] = [mm]\pmat{ 1 & 1 & 0 & 0 & ... & 0 \\ 1 & 2 & 1 & 0 & ... \\ 0 & 1 & 2 & 1 & ... \\ 0 & 0 & 1 & 2 & ... & 0 \\ ... & ... & ... & ... & ... & 1 \\ 0 & ... & ... & 0 & 1 & 2 }[/mm]
>  
> Hallo,
>  
> die obige Matrix ist mir gegeben.
>  
> Ich soll zeigen, dass [mm]det(A_{n})[/mm] = [mm]2*det(A_{n-1})[/mm] -
> [mm]det(A_{n-2})[/mm] ist für n > 2.
>  
> Mir ist irgendwie klar, dass ich hier den Laplaceschen
> Entwicklungssatz anwenden muss.


Hallo ali,

Letzteres ist bestimmt eine gute Idee. Jetzt musst
du sie nur noch realisieren, d.h. mal genau kucken,
wie man diesen Satz in einem Beispiel konkret
anwendet.
Da die erste Spalte nur 2 von 0 verschiedene Werte
enthält, würde ich mal nach dieser Spalte entwickeln
und schauen, was dabei herauskommt. Offenbar
kommen als Untermatrizen wieder analoge Matrizen
wie die originale vor - oder wenigstens solche mit
analogen Determinanten.

Kleine Frage: Steht ganz links oben wirklich eine 1
(und nicht doch eine 2 wie im ganzen Rest der
Hauptdiagonale) ?

Ich rechne bei solchen Fragen gerne mal einen
ganz konkreten Fall im Detail durch. Das würde
hier bedeuten, mal etwa [mm] A_2 [/mm] , [mm] A_3 [/mm] und [mm] A_4 [/mm] und ihre
Determinanten genau unter die Lupe zu nehmen

LG,   Al-Chw.



Bezug
        
Bezug
Matrix n x n: Beobachtung
Status: (Antwort) fertig Status 
Datum: 18:12 Mi 16.01.2013
Autor: Al-Chwarizmi


> [mm]A_{n}[/mm] = [mm]\pmat{ 1 & 1 & 0 & 0 & ... & 0 \\ 1 & 2 & 1 & 0 & ... \\ 0 & 1 & 2 & 1 & ... \\ 0 & 0 & 1 & 2 & ... & 0 \\ ... & ... & ... & ... & ... & 1 \\ 0 & ... & ... & 0 & 1 & 2 }[/mm]


Hallo !

ich hatte schon gefragt, ob links oben wirklich eine 1
(und nicht doch eine 2) stehen solle.

Nun habe ich noch Folgendes bemerkt:

Es spielt gar keine Rolle, was für eine Zahl dort
steht. Man könnte also gerade definieren:


    [mm]A_{n}[/mm] = [mm]\pmat{ \mbox{ \large{\red{c}}} & 1 & 0 & 0 & ... & 0 \\ 1 & 2 & 1 & 0 & ... \\ 0 & 1 & 2 & 1 & ... \\ 0 & 0 & 1 & 2 & ... & 0 \\ ... & ... & ... & ... & ... & 1 \\ 0 & ... & ... & 0 & 1 & 2 }[/mm]


( mit beliebigem  [mm] $\mbox{\red {\large{c\,\in\ \IR}}}$ [/mm] )

Und, was ev. doch noch gesagt sein sollte:
natürlich ist mit n die Dimension der (quadratischen)
Matrix [mm] A_n [/mm] gemeint.

LG ,   Al-Chw.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]