www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMatrixalgebren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Matrixalgebren
Matrixalgebren < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixalgebren: Übungsaufgabe (aktuell)
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 18:08 Di 02.02.2016
Autor: Schadowmaster

Aufgabe
Sei $K$ ein Körper und $F$ ein Erweiterungskörper vom Grad $n [mm] \in \IN$, [/mm] der in [mm] $K^{n \times n}$ [/mm] eingebettet wird.
Sei weiter $A [mm] \leq K^{n \times n}$ [/mm] eine $K-$Algebra mit $F [mm] \leq [/mm] A$.
Man zeige:
Es existiert ein Teilkörper $E$ mit $K [mm] \leq [/mm] E [mm] \leq [/mm] F$, sodass für $s = [F:E]$ gilt:
$A [mm] \cong E^{s \times s}$ [/mm] als $K-$Algebren.



An obiger Aussage habe ich einige Zeit geknabbert, aber jetzt da ich die Lösung habe, ist es recht einfach.
Daher wollte ich euch auch mal den Spaß gönnen.

Davon abgesehen: Kennt jemand zufällig ein Paper/Algebrabuch, aus dem man diese Aussage zitieren kann?

        
Bezug
Matrixalgebren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 So 14.02.2016
Autor: UniversellesObjekt

Hallo,

wieso sind die Antworten (die ja zumindest teilweise sichtbar waren) nun gesperrt? Ich hatte auch Interesse an der Lösung und würde sie gerne erfahren.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]