www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrixdarst. von Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrixdarst. von Abbildungen
Matrixdarst. von Abbildungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixdarst. von Abbildungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 04.12.2012
Autor: ETimo

Aufgabe
Gegeben sei das reelle Polynom [mm] \summe_{j=0}^{n} a_jx^j [/mm] und die Ableitung  reellen Polynoms
[mm] \bruch{d^k}{dx^k} [/mm] p(x):= [mm] \summe_{j=0}^{n-1} (j+1)a_j_+_1x^j [/mm]

b) Bestimmen Sie die Matrix [mm] A_k [/mm] von [mm] \bruch{d^k}{dx^k} [/mm] k=1,2, bzgl. der Monombasis [mm] {x^j}_j_=_0_._._._3 [/mm]

weitere Definition [mm] \bruch {d^k}{dx^k} [/mm] = [mm] (\bruch {d^k}{dx^k} [/mm] o ... o [mm] \bruch {d^k}{dx^k}) [/mm]  und das ganze k-mal

Ich blick da überhaupt nicht durch wäre super wenn ihr mir ein wenig auf die Sprünge helfen könntet..

        
Bezug
Matrixdarst. von Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Di 04.12.2012
Autor: leduart

Hallo
bezüglich der Basis [mm] x^k [/mm] k=0,1,..n) kannst du das polynom als Vektor mit den Komponenten [mm] a_0 [/mm] bis [mm] a_n [/mm] hinschreiben. wie sieht dann der Vektor für dp/dx aus und die für die höheren Ableitungen?
wenn du das hast, sind die Matrices leicht zu finden.
auf was werden denn die Basisvektoren abgebildet?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]