www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungMatrixgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Matrixgleichung
Matrixgleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixgleichung: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 18:28 Fr 16.12.2011
Autor: mathegenie_90

Aufgabe
Betrachten Sie die Matrizen S,T,U und V, die allesamt quadratisch,dimensionsgleich und invertierbar seien. Weiterhin seien alle Matrizen von null verschieden.
Bestimmen Sie S, sodass die Gleichung

[mm] 3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T [/mm]
eindeutig lösbar ist und vereinfachen Sie Ihr Ergebnis so weit wie möglich!

Hallo liebe forumfreunde,leider komme ich bei der obigen Aufgabe nicht weiter,deshlab bitte ich euch um eur ehilfe:

Mein Ansatz:

[mm] 3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T [/mm]

[mm] 3S^{-1}(U^{-1})^{T}-S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T [/mm]

[mm] S^{-1}[3(U^{-1})^{T}-(U^{T})^{-1}]=T^{-1}V(U^{-1})^{-1}T [/mm]

Wie komme ich jetzt weiter?was mich stört ist dieses [mm] "S^{-1}".Wie [/mm] mache ich daraus ein einfaches "S"?

Würd mich über jede Hilfe freuen.
Vielen Dank im Voraus.

mfg
danyal

        
Bezug
Matrixgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Fr 16.12.2011
Autor: schachuzipus

Hallo mathegenie,


> Betrachten Sie die Matrizen S,T,U und V, die allesamt
> quadratisch,dimensionsgleich und invertierbar seien.
> Weiterhin seien alle Matrizen von null verschieden.
>  Bestimmen Sie S, sodass die Gleichung
>  
> [mm]3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T[/mm]
>  eindeutig lösbar ist und vereinfachen Sie Ihr Ergebnis so
> weit wie möglich!
>  Hallo liebe forumfreunde,leider komme ich bei der obigen
> Aufgabe nicht weiter,deshlab bitte ich euch um eur ehilfe:
>  
> Mein Ansatz:
>  
> [mm]3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T[/mm]

Vereinfache doch erstmal die trivialen Sachen:

1) rechterhand: [mm](U^{-1})^{-1}=U[/mm]

2) linkerhand: [mm](U^T)^{-1}=(U^{-1})^T[/mm]

Weiter nehme ich an, dass mit [mm]E[/mm] die Einheitsmatrix gemeint ist?!

Dann vereinfacht sich das direkt zu [mm]2S^{-1}(U^{T})^{-1}=T^{-1}VUT[/mm]

>  
> [mm]3S^{-1}(U^{-1})^{T}-S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{-1}T[/mm] [ok]
>  
> [mm]S^{-1}[3(U^{-1})^{T}-(U^{T})^{-1}]=T^{-1}V(U^{-1})^{-1}T[/mm]

Wieso sollte das linkerhand gelten?

Die Multiplikation ist i.A. nicht kommutativ bei Matrizen ...

Fasse "besser" mal wie oben beschrieben zusammen.

Dann von rechts mit [mm]U^T[/mm] multiplizieren ...

Dann ist es doch nicht mehr weit!

>  
> Wie komme ich jetzt weiter?was mich stört ist dieses
> [mm]" s^{-1}".wie$"="" src="http://teximg.matheraum.de/render?d=108&s=$%24$" s^{-1}".wie"="">"="" src="http://teximg.matheraum.de/render?d=108&s=$%3Cspan%20class%3D$"math">$%24[/mm]"="" [/mm] src="http://teximg.matheraum.de/render?d=108&s=$" [mm] s^{-1}".wie"=""> [/mm] mache ich daraus ein einfaches "S"?
>  
> Würd mich über jede Hilfe freuen.
>  Vielen Dank im Voraus.
>  
> mfg
>  danyal

Gruß

schachuzipus


Bezug
                
Bezug
Matrixgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Sa 17.12.2011
Autor: mathegenie_90

Sorry ich hab die aufgabe falsch abgetippt,ich werde sie jetzt korrigieren.

> Hallo mathegenie,
>  
>
> > Betrachten Sie die Matrizen S,T,U und V, die allesamt
> > quadratisch,dimensionsgleich und invertierbar seien.
> > Weiterhin seien alle Matrizen von null verschieden.
>  >  Bestimmen Sie S, sodass die Gleichung
>  >  

[mm] 3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{T} [/mm]

>  >  eindeutig lösbar ist und vereinfachen Sie Ihr Ergebnis
> so
> > weit wie möglich!
>  >  Hallo liebe forumfreunde,leider komme ich bei der
> obigen
> > Aufgabe nicht weiter,deshlab bitte ich euch um eur ehilfe:
>  >  

Mein Ansatz:

[mm] 3S^{-1}(U^{-1})^{T}-E^{-1}S^{-1}(U^{T})^{-1}=T^{-1}V(U^{-1})^{T} [/mm]

[mm] 3S^{-1}(U^{-1})^{T}-S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T} [/mm]


> 1) rechterhand: [mm](U^{-1})^{-1}=U[/mm]

das geht ja nicht mher,da die aufgabe eine andere ist,hatte falsch abgetippt gehabt.(sorry)

2) linkerhand: [mm](U^T)^{-1}=(U^{-1})^T[/mm]

>  
> Weiter nehme ich an, dass mit [mm]E[/mm] die Einheitsmatrix gemeint
> ist?!

genau E=Einheitsmatrix

Wie komme ich denn jetzt weiter,die Vereinfachung auf der rechten Seite geht ja jetzt nicht mehr.

Würd mich über jede Hilfe freuen.
Vielen Dank im Voraus.

mfg
danyal



Bezug
                        
Bezug
Matrixgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Sa 17.12.2011
Autor: M.Rex

Hallo

Du hast:

$ [mm] 3S^{-1}(U^{-1})^{T}-S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T} [/mm] $

$ [mm] \Leftrightarrow2S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T} [/mm] $

Multipliziere nun von rechts mit dem Inversen von [mm] (U^{-1})^{T} [/mm]

$ [mm] \Leftrightarrow2S^{-1}=T^{-1}V(U^{-1})^{T}\cdot\ldots [/mm] $

Multipliziere nun noch mit 1/2

Marius


Bezug
                                
Bezug
Matrixgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Sa 17.12.2011
Autor: mathegenie_90


> Hallo
>  
> Du hast:
>  
> [mm]3S^{-1}(U^{-1})^{T}-S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T}[/mm]
>  
> [mm]\Leftrightarrow2S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T}[/mm]
>  
> Multipliziere nun von rechts mit dem Inversen von
> [mm](U^{-1})^{T}[/mm]
>  

[mm] \Leftrightarrow2S^{-1}=T^{-1}V(U^{-1})^{T}*((U^{1})^{T})^{-1} [/mm]

NR: [mm] (U^{-1})^{T}*((U^{1})^{T})^{-1}=E [/mm] oder?
wenn ja dann multipliziere ich ja mit 1/2,ok dann habe [mm] S^{-1} [/mm] alleine stehen
[mm] S^{-1}=0.5 [/mm] * [mm] T^{-1}*V [/mm]     um jetzt zu erhalten,muss ich einfach den kehrwert bilden,sodass

[mm] S=2T*V^{-1} [/mm] rauskommt?ist das richtig?wenn ja ,darf man bei matrixoperationen dne kehrwert bilden?

vielen dank im voraus.
mfg
danyal

Bezug
                                        
Bezug
Matrixgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Sa 17.12.2011
Autor: M.Rex

Hallo

> > Hallo
>  >  
> > Du hast:
>  >  
> > [mm]3S^{-1}(U^{-1})^{T}-S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T}[/mm]
>  >  
> > [mm]\Leftrightarrow2S^{-1}(U^{-1})^{T}=T^{-1}V(U^{-1})^{T}[/mm]
>  >  
> > Multipliziere nun von rechts mit dem Inversen von
> > [mm](U^{-1})^{T}[/mm]
>  >  
> [mm]\Leftrightarrow2S^{-1}=T^{-1}V(U^{-1})^{T}*((U^{1})^{T})^{-1}[/mm]
>  
> NR: [mm](U^{-1})^{T}*((U^{1})^{T})^{-1}=E[/mm] oder?

Korrekt

>  wenn ja dann multipliziere ich ja mit 1/2,ok dann habe
> [mm]S^{-1}[/mm] alleine stehen
>  [mm]S^{-1}=0.5[/mm] * [mm]T^{-1}*V[/mm]     um jetzt zu erhalten,muss ich
> einfach den kehrwert bilden,sodass
>  

Nein, invertiere beide Seiten, also:

[mm] $S^{-1}=0.5T^{-1}V$ [/mm]
[mm] $\leftrightarrow S=\left(0.5T^{-1}V\right)^{-1}$ > [/mm]  [mm]S=2T*V^{-1}[/mm] rauskommt?ist das richtig?wenn ja ,darf man bei

> matrixoperationen dne kehrwert bilden?

Nein, nicht ohne weiteres.
Bedenke, dass
[mm] (A\cdot B)^{-1}=B^{-1} \cdot A^{-1} [/mm] .

>  
> vielen dank im voraus.
>  mfg
>  danyal

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]