www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrixmultiplikation assoziati
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrixmultiplikation assoziati
Matrixmultiplikation assoziati < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixmultiplikation assoziati: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 20.01.2009
Autor: Pille456

Hi!

Zur Übung wollte ich mal die Assoziativität der Matrizenmultiplikation beweisen. Das das so ist, ist mir klar, da Matrizmultiplikation auf die "normale" Addition und Multiplikation zurückzuführen ist.
Nun bin ich etwas schreibfaul und möchte nicht 3 n [mm] \times [/mm] n Matrizen aufstellen und das alles ausrechnen - das müsste doch auch einfacher gehen.
Mein Ansatz dafür sieht so aus:

Jede Matrix kann auch eine lineare Abbildung repräsentieren, also z.B. folgendes:
[mm] \pmat{ 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 } [/mm] = [mm] _{B}[f]_{B} [/mm] mit f als lineare Abbildung und B beliebiger Basen des Bildes von f bzw. des Urbildes. (nennt man so die Variable die ich in eine Funktion/Abbildung "hineinpacke"?)
Nun würde es doch reichen zu Beweisen, dass die Verknüpfung von drei linearen Abbildungen assoziativ ist oder?
Also sowas:
f: [mm] \IR^{n} \to \IR^{n}, [/mm] g: [mm] \IR^{n} \to \IR^{n}, [/mm] h: [mm] \IR^{n} \to \IR^{n} [/mm]
((f [mm] \circ [/mm] g) [mm] \circ [/mm] h) (x) = (f(g) [mm] \circ [/mm] h)(x) = f(g(h(x)))
(f  [mm] \circ [/mm] (g [mm] \circ [/mm] h)) (x) = (f [mm] \circ [/mm] g(h))(x) = f(g(h(x))) [mm] \Rightarrow [/mm] die Komposition von Abbildungen sind assoziativ [mm] \Rightarrow [/mm] Matrixmultiplikation ist assoziativ

        
Bezug
Matrixmultiplikation assoziati: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Di 20.01.2009
Autor: kuemmelsche


> Hi!

Hallo,

> Zur Übung wollte ich mal die Assoziativität der
> Matrizenmultiplikation beweisen. Das das so ist, ist mir
> klar, da Matrizmultiplikation auf die "normale" Addition
> und Multiplikation zurückzuführen ist.
>  Nun bin ich etwas schreibfaul und möchte nicht 3 n [mm]\times[/mm]
> n Matrizen aufstellen und das alles ausrechnen - das müsste
> doch auch einfacher gehen.
>  Mein Ansatz dafür sieht so aus:
>  
> Jede Matrix kann auch eine lineare Abbildung
> repräsentieren.

Ja, als darstellende Matrix der linearen Abbildung.

>  Nun würde es doch reichen zu Beweisen, dass die
> Verknüpfung von drei linearen Abbildungen assoziativ ist
> oder?

Genau!

>  Also sowas:
>  f: [mm]V \to W,[/mm] g: [mm]W \to X,[/mm] h: [mm]X \to Z[/mm]

[mm] \forall [/mm] V, W, X, Z Vektorräume

> ((f [mm]\circ[/mm] g) [mm]\circ[/mm] h) (x) = (f(g) [mm]\circ[/mm] h)(x) = f(g(h(x)))
>  (f  [mm]\circ[/mm] (g [mm]\circ[/mm] h)) (x) = (f [mm]\circ[/mm] g(h))(x) =
> f(g(h(x)))

Ich denke den [mm] \IR^n [/mm] alleine zu betrachten ist nicht allgemein genug, aber das weiß ich nicht genau, da ja der [mm] \IR^n [/mm] eine Art "Prototyp" eines n dimensionalen Vektorraums darstellt (also ein Isomorphismus existiert).

Ich würde auch nicht so eine Art "w.A."-Beweis machen.

Ich denke ((f [mm]\circ[/mm] g) [mm]\circ[/mm] h) (x) = (f(g) [mm]\circ[/mm] h)(x) = f(g(h(x)))=(f [mm]\circ[/mm] g(h))(x)=(f  [mm]\circ[/mm] (g [mm]\circ[/mm] h)) (x) ist ein wenig besser formuliert.

lg Kai


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]