Matrixproblem < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:22 Mi 25.04.2007 | Autor: | Meli90 |
Aufgabe | [mm] K=\pmat{ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & s \\ 0 & 0 & 0 & 0} [/mm] (s [mm] \ge [/mm] 1). Zeige, dass [mm] K^{s}=0 [/mm] aber [mm] K^{s-1} \not= [/mm] 0 |
Hi zusammen.
Ich habe mal wieder eine Aufgabe bei der ich hänge.. Also die Aufgabenstellung an sich ist mir klar, ich muss das für den allg. Fall zeigen.
Ich habe mir auch einige Matrizen aufgezeichnet und es leuchtet mir ein, dass die Aussage stimmen muss. Nur wie kann ich das allgemein zeigen?
Hab mir schon überlegt ob ich eine Abbildung zur Matrix aufstellen sollte: f(x,y,z,t)=(y,z,t). Hilft das weiter?
Ich bin etwas ratlos, wäre sehr froh um Tipps und Lösungsansätze. Vielen herzlichen Dank!! Mel
|
|
|
|
> [mm]K=\pmat{ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & s \\ 0 & 0 & 0 & 0}[/mm]
> (s [mm]\ge[/mm] 1). Zeige, dass [mm]K^{s}=0[/mm] aber [mm]K^{s-1} \not=[/mm] 0
> Hi zusammen.
> Ich habe mal wieder eine Aufgabe bei der ich hänge.. Also
> die Aufgabenstellung an sich ist mir klar, ich muss das für
> den allg. Fall zeigen.
> Ich habe mir auch einige Matrizen aufgezeichnet und es
> leuchtet mir ein, dass die Aussage stimmen muss. Nur wie
> kann ich das allgemein zeigen?
> Hab mir schon überlegt ob ich eine Abbildung zur Matrix
> aufstellen sollte: f(x,y,z,t)=(y,z,t). Hilft das weiter?
> Ich bin etwas ratlos, wäre sehr froh um Tipps und
> Lösungsansätze. Vielen herzlichen Dank!! Mel
Hallo,
irgendwie scheinst Du die Aufgabe falsch aufgeschrieben zu haben.
Kann es sein, daß K eigentlich eine nxn-Matrix sein soll mit den Elementen s auf der "Oberdiagonalen"?
Dann hat der zugrundeliegende Vektorraum ein Basis [mm] (b_1,...b_n), [/mm] so daß für die Abbildung f, welche durch die Matrix dargestellt wird, gilt:
[mm] f(b_1)=0
[/mm]
[mm] f(b-i)=b_{i-1} [/mm] für i=2,...n
Nun könntest Du ja [mm] f^{n-1}(b_i) [/mm] berechnen und
[mm] f^n(b_i).
[/mm]
Gruß v. Angela
|
|
|
|