www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrizen
Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Berechnung von Matrizen
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 08.06.2011
Autor: Sarah_Scholz

Aufgabe
Für die [mm] \IR-lineare [/mm] Abbildung gegeben durch f: [mm] \IR_{3} \to \IR_{3} [/mm]
[mm] \vektor{a_{1} \\ a_{2} \\ a_{3}} \to \vektor{a_{1}-a_{2}+a_{3} \\ -6a_{2}+12a_{3} \\ -2a_{1}+2a_{2}-2a_{3}} [/mm]
berechne man die Matrix [mm] M_{B}^{A}(f), [/mm] falls
i) [mm] A=B={\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1} } [/mm] ( die Standardbasis)

ii) [mm] A={\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1} } B={\vektor{-1 \\ 0 \\ 1},\vektor{-1 \\ 2 \\ 1},\vektor{-2 \\ 0 \\ 4} } [/mm]

iii) [mm] A=B={\vektor{-1 \\ 0 \\ 1},\vektor{-1 \\ 2 \\ 1},\vektor{-2 \\ 0 \\ 4} } [/mm]

ok also ich hab bei dieser Aufgabe einige Schwierigkeiten. Ich hatte mir gedacht ich setze in teilaufagbe i) erstmal die vektoren meiner Basis  in die Abbildung ein und würde dafür dann die Matrix [mm] \pmat{ 1 & -1 & 1 \\ 0 & -6 & 12 \\ -2 & 2 & -2 } [/mm]
stimmt des so? weil um die Matrix zu bestimmen muss man ja die Bilder der Basisvektoren in B als koordinaten von A schreiben. Aber A und B sind ja in dem Fall dieselben Basen. Oder muss ich noch etwas machen?
dann wär des aber bei teilaufgabe iii) auch der fall?
und wie muss ich bei Teilaufgabe ii) vorgehen? wie kann  ich die matrix umwandeln in die koordinatenschreibweise von A wenn ich se als B so wie oben dargestellt habe?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Mi 08.06.2011
Autor: MathePower

Hallo Sarah_Scholz,


> Für die [mm]\IR-lineare[/mm] Abbildung gegeben durch f: [mm]\IR_{3} \to \IR_{3}[/mm]
>  
> [mm]\vektor{a_{1} \\ a_{2} \\ a_{3}} \to \vektor{a_{1}-a_{2}+a_{3} \\ -6a_{2}+12a_{3} \\ -2a_{1}+2a_{2}-2a_{3}}[/mm]
>  
> berechne man die Matrix [mm]M_{B}^{A}(f),[/mm] falls
>  i) [mm]A=B={\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1} }[/mm]
> ( die Standardbasis)
>  
> ii) [mm]A={\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1} } B={\vektor{-1 \\ 0 \\ 1},\vektor{-1 \\ 2 \\ 1},\vektor{-2 \\ 0 \\ 4} }[/mm]
>  
> iii) [mm]A=B={\vektor{-1 \\ 0 \\ 1},\vektor{-1 \\ 2 \\ 1},\vektor{-2 \\ 0 \\ 4} }[/mm]
>  
> ok also ich hab bei dieser Aufgabe einige Schwierigkeiten.
> Ich hatte mir gedacht ich setze in teilaufagbe i) erstmal
> die vektoren meiner Basis  in die Abbildung ein und würde
> dafür dann die Matrix [mm]\pmat{ 1 & -1 & 1 \\ 0 & -6 & 12 \\ -2 & 2 & -2 }[/mm]
>  
> stimmt des so? weil um die Matrix zu bestimmen muss man ja
> die Bilder der Basisvektoren in B als koordinaten von A
> schreiben. Aber A und B sind ja in dem Fall dieselben
> Basen. Oder muss ich noch etwas machen?


Für den Teil i) bist Du fertig.


>  dann wär des aber bei teilaufgabe iii) auch der fall?


Nein.

Hier musst Du die Bilder der Basiselemente aus A
als Linearkombination der Basiselemente aus B darstellen.

Daher ist hier etwas mehr Arbeit erforderlich als bei i).


>  und wie muss ich bei Teilaufgabe ii) vorgehen? wie kann  
> ich die matrix umwandeln in die koordinatenschreibweise von
> A wenn ich se als B so wie oben dargestellt habe?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
                
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 13.06.2011
Autor: Kate-Mary

Ich sitz an der gleichen Aufgabe...und um ehrlich zu sein ich kapier fast gar nichts...meine Idee war einfach die Basisvektoren in die Funktion einzusetzen und dann zu schaun, wie ich irgendwie den anderen Vektor hinbekommen...aber das funktioniert nicht so richtig.
Kann mir mal bitte jemand schrittweise erklären, was ich eigentlich machen soll bzw. wie?

Bezug
                        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Di 14.06.2011
Autor: angela.h.b.


> Ich sitz an der gleichen Aufgabe...und um ehrlich zu sein
> ich kapier fast gar nichts...meine Idee war einfach die
> Basisvektoren in die Funktion einzusetzen


Hallo,

ja, das ist der erste Schritt:
bestimme die Bilder der Basisvektoren "Startbasis".
Schreibe sie nun als Linearkombination der Basisvektoren der gewünschten Basis des Bildraumes
Nun kannst Du die Koordinatenvektoren aufstellen und hast damit die Spalten der gesuchten Matrix.

Gruß v. Angela

> und dann zu
> schaun, wie ich irgendwie den anderen Vektor
> hinbekommen...aber das funktioniert nicht so richtig.
>  Kann mir mal bitte jemand schrittweise erklären, was ich
> eigentlich machen soll bzw. wie?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]