www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen / Komposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Matrizen / Komposition
Matrizen / Komposition < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen / Komposition: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 14:56 Mo 12.05.2014
Autor: fuoor

Aufgabe
Gegeben seien die reellen Matrizen

[mm] P=\pmat{ 3 & 1 & 1 \\ 0 & 1 & 1 } [/mm] und [mm] Q=\pmat{ 1 & -1 \\ -1 & 2 \\ 1 & 1 } [/mm]

a) Welche Formate haben P und Q?

b) Geben Sie die Abbildungsvorschrift von P [mm] \circ [/mm] Q an.

c) Stellen Sie Bild und Kern von P [mm] \circ [/mm] Q möglichst einfach dar.

d) Sei nun A eine Matrix aus [mm] \IR^2,2 [/mm] und seien [mm] \vec{v_{1}}, \vec{v_{2}} [/mm] Vektoren aus [mm] \IR^2. [/mm] Beweisen oder Widerlegen Sie folgende Aussagen:

(i)Sind [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] linear abhängig, so sind auch [mm] A\vec{v_{1}} [/mm] und [mm] A\vec{v_{2}} [/mm] linear abhängig.
(ii)Sind [mm] A\vec{v_{1}} [/mm] und [mm] A\vec{v_{2}} [/mm] linear abhängig, so sind auch [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] linear abhängig.
(iii)Sind [mm] A\vec{v_{1}} [/mm] und [mm] A\vec{v_{2}} [/mm] linear unabhängig, so sind auch [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] linear unabhängig.
(iv)Sind [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] linear unabhängig, so sind auch [mm] A\vec{v_{1}} [/mm] und [mm] A\vec{v_{2}} [/mm] linear unabhängig.

Hallo zusammen!

Ich brauche ein wenig support ;)


zu
a)

Format von [mm] P=2\times3 [/mm]

Format von [mm] Q=3\times2 [/mm]

Ich denke mal das Erwähnte ist gesucht.


zu
b)

Hier ist mir nicht ganz klar wie ich die Komposition bzw. Hinterenanderausführung (ist das überhaupt damit gemeint?) bewerten soll. Ich kann ja z.B. die Matrix P und Q nehmen. Die Abbildungsvorschriften für P und Q sind

P: [mm] \IR^{3} \to \IR^{2} [/mm] | x [mm] \to P\vec{x} [/mm]

da P lediglich in den [mm] R^{2} [/mm] abbildet.

Q: [mm] \IR^{2} \to \IR^{3} [/mm] | x [mm] \to Q\vec{x} [/mm]

da Q lediglich in den [mm] R^{3} [/mm] abbildet.

Was passiert nunn also mit der Hintereinanderausführung?

[mm] P\circQ R^{3} \to R^{3} [/mm] | x [mm] \to P\circQ\vec{x} [/mm] ????

Reicht das als Angabe? und ist das überhaupt korrekt?


zu
c)

Das Bild [mm] (P\circQ) [/mm] ist ja gleich dem span aller möglichen Linearkombinationen, wobei ich den span auf die Vektoren beschränken kann, mit denen alle Vektoren gebildet werden können. Ich denke hier soll gerechnet werden. Nur wie das angestellt wird ist mir noch nicht so ganz klar.


zu
d)

Hier brauche ich einen Schubs in die richtige Richtung, damit ich weiß wo ich ansetzen soll.


Vielen Dank für die Hilfe.

Viele Grüße!


        
Bezug
Matrizen / Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 12.05.2014
Autor: angela.h.b.


> Gegeben seien die reellen Matrizen
>  
> [mm]P=\pmat{ 3 & 1 & 1 \\ 0 & 1 & 1 }[/mm] und [mm]Q=\pmat{ 1 & -1 \\ -1 & 2 \\ 1 & 1 }[/mm]
>  
> a) Welche Formate haben P und Q?
>  
> b) Geben Sie die Abbildungsvorschrift von P [mm]\circ[/mm] Q an.
>  
> c) Stellen Sie Bild und Kern von P [mm]\circ[/mm] Q möglichst
> einfach dar.
>  
> d) Sei nun A eine Matrix aus [mm]\IR^2,2[/mm] und seien [mm]\vec{v_{1}}, \vec{v_{2}}[/mm]
> Vektoren aus [mm]\IR^2.[/mm] Beweisen oder Widerlegen Sie folgende
> Aussagen:
>  
> (i)Sind [mm]\vec{v_{1}}[/mm] und [mm]\vec{v_{2}}[/mm] linear abhängig, so
> sind auch [mm]A\vec{v_{1}}[/mm] und [mm]A\vec{v_{2}}[/mm] linear abhängig.
> (ii)Sind [mm]A\vec{v_{1}}[/mm] und [mm]A\vec{v_{2}}[/mm] linear abhängig, so
> sind auch [mm]\vec{v_{1}}[/mm] und [mm]\vec{v_{2}}[/mm] linear abhängig.
>  (iii)Sind [mm]A\vec{v_{1}}[/mm] und [mm]A\vec{v_{2}}[/mm] linear
> unabhängig, so sind auch [mm]\vec{v_{1}}[/mm] und [mm]\vec{v_{2}}[/mm]
> linear unabhängig.
> (iv)Sind [mm]\vec{v_{1}}[/mm] und [mm]\vec{v_{2}}[/mm] linear unabhängig, so
> sind auch [mm]A\vec{v_{1}}[/mm] und [mm]A\vec{v_{2}}[/mm] linear
> unabhängig.
>  Hallo zusammen!
>  
> Ich brauche ein wenig support ;)
>  
>
> zu
>  a)
>
> Format von [mm]P=2\times3[/mm]
>  
> Format von [mm]Q=3\times2[/mm]
>  
> Ich denke mal das Erwähnte ist gesucht.

Hallo,

ja, das denke ich auch.

>  
>
> zu
>  b)
>  
> Hier ist mir nicht ganz klar wie ich die Komposition bzw.
> Hinterenanderausführung (ist das überhaupt damit
> gemeint?) bewerten soll.

Die Frage ist etwas undeutlich formuliert, finde ich.

Durch die Matrix P wird ja eine lineare Abbildung [mm] f_P [/mm] beschrieben mit

[mm] f_P:\IR^3\to \IR^2 [/mm] mit

[mm] f_P(x):=Px=\vektor{ 3x_1 +1x_2 +1x_3 \\ 0x_1 +1x_2 +1x_3 } [/mm] für alle [mm] x:=\vektor{x_1\\x_2\\x_3}\in \IR^3, [/mm]


durch die Matrix Q wird eine lineare Abbildung [mm] f_Q [/mm] beschrieben mit

[mm] f_Q:\IR^2\to \IR^3 [/mm] mit

[mm] f_Q(x):=Qx= [/mm] ... für alle [mm] x:=\vektor{x_1\\x_2} \in \IR^2, [/mm]

und Du sollst nun die Abbildungsvorschrift der Abbildung [mm] f_P\circ f_Q [/mm] sagen, also von wo nach wo abgebildet wird, und wie das geschieht.

Es ist [mm] f_P\circ f_Q(x) [/mm] ja definiert durch [mm] (f_P\circ f_Q)(x):= f_P( f_Q(x)), [/mm] also haben wir eine Abbildung [mm] \IR^2\to \IR^2, [/mm]

und Du sollst nun die Abbildungsvorschrift sagen: [mm] (f_P\circ f_Q)\vektor{x_1\\x_2}= [/mm] ???

Du wist feststellen, daß man diese Abbildung beschreiben kann durch die Matrix P*Q.



> zu
>  c)
>  
> Das Bild [mm](P\circQ)[/mm] ist ja gleich dem span aller möglichen
> Linearkombinationen, wobei ich den span auf die Vektoren
> beschränken kann, mit denen alle Vektoren gebildet werden
> können. Ich denke hier soll gerechnet werden. Nur wie das
> angestellt wird ist mir noch nicht so ganz klar.

Es ist hier eine Basis des von den Spalten von P*Q aufgespannten Raumes zu bestimmen.

>  
>
> zu
>  d)
>
> Hier brauche ich einen Schubs in die richtige Richtung,
> damit ich weiß wo ich ansetzen soll.

Naja, die Matrix A ist eine [mm] 2\times [/mm] 2-Matrix, die Darstellungsmatrix der durch [mm] f_A(x):=Ax [/mm] gegebenen linearen Abbildung.

(i)Sind $ [mm] \vec{v_{1}} [/mm] $ und $ [mm] \vec{v_{2}} [/mm] $ linear abhängig, so sind auch $ [mm] A\vec{v_{1}} [/mm] $ und $ [mm] A\vec{v_{2}} [/mm] $ linear abhängig

Hier ist zu überlegen, ob bei einer linearen Abbildung aus dem [mm] \IR^2 [/mm] in den [mm] \IR^2 [/mm] bei linear abhängigen Vektoren [mm] v_1, v_2 [/mm] auch deren Bilder linear abhängig sind, oder ob die Bilder auch linear unabhängig sein können.

Können sie nicht:

Seien [mm] v_1, v_2 [/mm] linear abhängig. Dann gibt es Zahlen [mm] \lambda_1, \lambda_2, [/mm] die nicht beide =0 sind, und für welche [mm] \lambda_1v_1+\lambdav_2=0 [/mm] gilt.

Dann ist [mm] \lambda_ Av_1+ \lambda_2 Av_2= A(\lambda_1v_1)+...=A(\lambda_1v_1+...)= [/mm] A*0=0, also ...


Wenn Du das hast, versuche die anderen.

LG Angela



>  
>
> Vielen Dank für die Hilfe.
>  
> Viele Grüße!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]