Matrizen für lin. Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:42 Mo 11.01.2010 | Autor: | pestaiia |
Aufgabe | Es sei [mm] \Phi [/mm] : [mm] \IR^n [/mm] → [mm] \IR^n [/mm] die lineare Abbildung, welche durch
[mm] e_1 [/mm] → [mm] e_1 [/mm] − [mm] e_2 [/mm] , [mm] e_2 [/mm] → [mm] e_2 [/mm] − [mm] e_3 [/mm] , ..., [mm] e_{n−1} [/mm] → [mm] e_{n−1} [/mm] − [mm] e_n, e_n [/mm] → [mm] e_n [/mm] − [mm] e_1
[/mm]
definiert wird.
a) Geben Sie die Matrix für [mm] \Phi [/mm] an.
b) Geben Sie eine Basis für den Unterraum [mm] \Phi(\IR^n)\subset\IR^n [/mm] an.
|
Hallo!
Kann mir jemand helfen? Ich weiß nicht wie ich hier vorgehen muss. Also [mm] e_1, e_2 [/mm] usw. sind die Standardvektoren. Und sie werden so abgebildet, dass z. B. der Vektor (1, 0, 0) auf den Vektor (1, -1, 0) abgebildet wird. Der Vektor (0 ,1 , 0) auf den Vektor (0,1,-1) usw.
Sieht die Matrix dann so aus:
[mm] \pmat{ 1 & 0 & 0 & ... & 0\\ -1 & 1 & 0 & ... &0\\ ................\\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1} [/mm] ???
Wie finde ich den Unterraum von [mm] \Phi?
[/mm]
Danke schon mal!
LG Pestaiia
|
|
|
|
> Es sei [mm]\Phi[/mm] : [mm]\IR^n[/mm] → [mm]\IR^n[/mm] die lineare Abbildung,
> welche durch
> [mm]e_1[/mm] → [mm]e_1[/mm] − [mm]e_2[/mm] , [mm]e_2[/mm] → [mm]e_2[/mm] − [mm]e_3[/mm] , ..., [mm]e_{n−1}[/mm]
> → [mm]e_{n−1}[/mm] − [mm]e_n, e_n[/mm] → [mm]e_n[/mm] − [mm]e_1[/mm]
> definiert wird.
> a) Geben Sie die Matrix für [mm]\Phi[/mm] an.
> b) Geben Sie eine Basis für den Unterraum
> [mm]\Phi(\IR^n)\subset\IR^n[/mm] an.
>
> Hallo!
> Kann mir jemand helfen? Ich weiß nicht wie ich hier
> vorgehen muss. Also [mm]e_1, e_2[/mm] usw. sind die
> Standardvektoren. Und sie werden so abgebildet, dass z. B.
> der Vektor (1, 0, 0) auf den Vektor (1, -1, 0) abgebildet
> wird. Der Vektor (0 ,1 , 0) auf den Vektor (0,1,-1) usw.
> Sieht die Matrix dann so aus:
> [mm]\pmat{ 1 & 0 & 0 & ... & 0\\ -1 & 1 & 0 & ... &0\\ ................\\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1}[/mm]
> ???
Hallo,
so ähnlich.
Du hast die letzte Spalte vergessen.
> Wie finde ich den Unterraum von [mm]\Phi?[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
???
Es geht hier um \phi(\IR^n}, also um das Bild von \phi.
Gesucht ist also eine Basis des von den n Spalten aufgespannten Raumes.
Gruß v. Angela
> Danke schon mal!
> LG Pestaiia
>
|
|
|
|