www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen in ZSF bringen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrizen in ZSF bringen
Matrizen in ZSF bringen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen in ZSF bringen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:23 Sa 29.11.2008
Autor: Lilith05

Aufgabe
Bringen Sie die folgenden zwei reellwertigen Matrizen in Zeilenstufenform (ZSF):
a) [mm] \pmat{ 3 & -1 & 2 & 4 \\ 2 & -3 & 1 & 3 \\ -1 & 5 & 0 & -2 \\ 4 & 1 & 3 & 5 } [/mm]
b) [mm] \pmat{ 3 & 0 & 5 & -1 & 0 \\ -1 & 1 & 0 & 2 & 2 \\ 0 & -1 & 2 & 1 & -2 \\ 1 & 1 & 0 & 0 & 2 } [/mm]

Ich habe zu beiden bereits einen Lösungsversuch. Das ganze sieht am Ende so aus:

a) [mm] \pmat{ 3 & -1 & 2 & 4 \\ 0 & 7 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]
Ist dies bereits eine Zeilenstufenform, ist es also okay, dass die letzten zwei Einträge der Diagonalen = 0 sind?
Und müsste vllt. die ganze Diagonale die Einträge 1 enthalten (was ein Kommilitone von mir sagte). Wenn ja, wie bekomme ich das hin? Ich darf ja nicht einfach Zeile 1 durch drei teilen, oder? Und selbst wenn, wie kriege ich diese nullen in Zeile 3 und 4 da weg?

b) [mm] \pmat{ 3 & 0 & 5 & -1 & 0 \\ 0 & 3 & 5 & 5 & 6 \\ 0 & 0 & 11 & 8 & 6 \\ 0 & 0 & 0 & 36 & 0 } [/mm]
Wieder die Frage: Ist dies die ZSF? Es gibt hier ja keine direkte Diagonale, deshalb bin ich mir unsicher. Und müsste auch hier eigentlich wieder überall 1 auf der Diagonalen stehen?

Für Antworten/ Korrekturen wäre ich sehr dankbar!
Lg, Lilith

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Matrizen in ZSF bringen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Sa 29.11.2008
Autor: schachuzipus

Hallo Lilith05,

> Bringen Sie die folgenden zwei reellwertigen Matrizen in
> Zeilenstufenform (ZSF):
>  a) [mm]\pmat{ 3 & -1 & 2 & 4 \\ 2 & -3 & 1 & 3 \\ -1 & 5 & 0 & -2 \\ 4 & 1 & 3 & 5 }[/mm]
>  
> b) [mm]\pmat{ 3 & 0 & 5 & -1 & 0 \\ -1 & 1 & 0 & 2 & 2 \\ 0 & -1 & 2 & 1 & -2 \\ 1 & 1 & 0 & 0 & 2 }[/mm]
>  
> Ich habe zu beiden bereits einen Lösungsversuch. Das ganze
> sieht am Ende so aus:
>  
> a) [mm]\pmat{ 3 & -1 & 2 & 4 \\ 0 & 7 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }[/mm]

[ok]

>  
> Ist dies bereits eine Zeilenstufenform, [ok] ist es also okay,
> dass die letzten zwei Einträge der Diagonalen = 0 sind?
> Und müsste vllt. die ganze Diagonale die Einträge 1
> enthalten (was ein Kommilitone von mir sagte).

Das wäre die reduzierte ZSF

> Wenn ja, wie
> bekomme ich das hin? Ich darf ja nicht einfach Zeile 1
> durch drei teilen, oder?

Warum nicht, du kennst doch die 3 erlaubten Typen von Umformungen, dazu gehört, dass du eine Zeile mit einem Skalar [mm] \neq [/mm] 0 multiplizieren darfst

> Und selbst wenn, wie kriege ich
> diese nullen in Zeile 3 und 4 da weg?

??? wieso solltest du die wegbekommen wollen, das einzige, was bis zur reduz. ZSF fehlt ist

(1) 2.Zeile auf das  7-fache der 1.Zeile addieren

(2) 1.Zeile [mm] \cdot{}\frac{1}{21} [/mm]

(2) 2. Zeile [mm] \cdot{}\frac{1}{7} [/mm]

>  
> b) [mm] $\pmat{ 3 & 0 & 5 & -1 & 0 \\ 0 & 3 & 5 & 5 & 6 \\ 0 & 0 & 11 & 8 & \red{6} \\ 0 & 0 & 0 & 36 & 0 }$ [/mm] ([ok])

Da habe ich statt der [mm] $\red{6}$ [/mm] eine 0 stehen, hast du dich vllt. verschrieben?

Spielt aber auch keine große Rolle ;-) Das Ding ist so oder so in ZSF

>  
> Wieder die Frage: Ist dies die ZSF? [ok]Es gibt hier ja keine
> direkte Diagonale, deshalb bin ich mir unsicher. Und müsste
> auch hier eigentlich wieder überall 1 auf der Diagonalen
> stehen?

Nein, Hauptsache die Einträge unterhalb der Diagonalen sind alle 0

Was letztlich auf der Diagonalen steht, ist doch egal

Die Nullmatrix ist doch auch eine Matrix in ZSF, oder?

>  
> Für Antworten/ Korrekturen wäre ich sehr dankbar!
>  Lg, Lilith
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]