www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen und Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrizen und Polynome
Matrizen und Polynome < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen und Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 So 20.06.2010
Autor: dannyf86

Aufgabe
1. Sei K ein Körper und A [mm] \in K^{n\times n}. [/mm] Zeigen Sie: Ist A invertierbar, so existiert ein Polynom q [mm] \in [/mm] K[t] mit deg(p) [mm] \le [/mm] n − 1 und [mm] A^{-1} [/mm] = q(A), d.h. es existieren [mm] b_0, b_1, [/mm] . . . , [mm] b_{n-1} \in [/mm] K mit [mm] A^{-1} [/mm] = [mm] \summe_{j=0}^{n-1} b_jA^j [/mm] = [mm] b_0 [/mm] In + [mm] b_1 [/mm] A + · · · + [mm] b_{n-1}A^{n-1}. [/mm]

2. Sei A [mm] \in K^{n\times n} [/mm] nilpotent.

(i) Zeigen Sie, dass A nur Null als Eigenwert hat.
(ii) Bestimmen Sie [mm] P_A [/mm] und zeigen Sie [mm] A^n [/mm] = 0.
Hinweis: Sie dürfen annehmen, dass [mm] P_A [/mm] in Linearfaktoren zerfällt
(iii) Zeigen Sie, dass rI - A genau dann invertierbar ist, wenn r [mm] \in K\{0} [/mm] ist.
(iv) Zeigen Sie
(I - [mm] A)^{-1} [/mm] = I + A + [mm] A^2 [/mm] + · · · + [mm] A^{n-1}. [/mm]

Hallo,

ich habe leider mal wieder Probleme mit nen paar Aufgaben. Also bei 1. habe ich gar keon Ansatz, da Ich mit Polynome wirklich Schwierigkeiten habe. Ich hoffe irgendwer kann mir da helfen. bei 2. hab eich aufjedenfall i hinbekommen. aber beim rest fehlt mir irgendwie der anfang. Ich wäre über hilfe echt dankbar.

Danke

        
Bezug
Matrizen und Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Mo 21.06.2010
Autor: felixf

Moin!

> 1. Sei K ein Körper und A [mm]\in K^{n\times n}.[/mm] Zeigen Sie:
> Ist A invertierbar, so existiert ein Polynom q [mm]\in[/mm] K[t] mit deg(p) [mm]\le[/mm] n − 1 und [mm]A^{-1}[/mm] = q(A), d.h. es existieren [mm]b_0, b_1,[/mm] . . . , [mm]b_{n-1} \in[/mm] K mit [mm]A^{-1}[/mm] = [mm]\summe_{j=0}^{n-1} b_jA^j[/mm] = [mm]b_0[/mm] In + [mm]b_1[/mm] A + · · · + [mm]b_{n-1}A^{n-1}.[/mm]
>  
> 2. Sei A [mm]\in K^{n\times n}[/mm] nilpotent.
>  
> (i) Zeigen Sie, dass A nur Null als Eigenwert hat.
>  (ii) Bestimmen Sie [mm]P_A[/mm] und zeigen Sie [mm]A^n[/mm] = 0.
>  Hinweis: Sie dürfen annehmen, dass [mm]P_A[/mm] in Linearfaktoren zerfällt
>  (iii) Zeigen Sie, dass rI - A genau dann invertierbar ist, wenn r [mm]\in K\{0}[/mm] ist.
>  (iv) Zeigen Sie
>  (I - [mm]A)^{-1}[/mm] = I + A + [mm]A^2[/mm] + · · · + [mm]A^{n-1}.[/mm]
>  
> ich habe leider mal wieder Probleme mit nen paar Aufgaben. Also bei 1. habe
> ich gar keon Ansatz, da Ich mit Polynome wirklich Schwierigkeiten habe.

Was ist denn dein Problem mit Polynomen?

Schau dir mal das charakteristische Polynom an. Kannst du etwas ueber den konstanten Term aussagen? Teile das Polynom doch mal durch diesen, nennen wir das Ergebnis mal $f$, und schreib $f(P)$ hin. Was kannst du ueber den Wert sagen? Und kannst du daraus etwas von der Form $A [mm] \cdot [/mm] (...) = I$ machen, wobei $...$ ein polynomieller Ausdruck in $A$ ist?

> Ich hoffe irgendwer kann mir da helfen. bei 2. hab eich aufjedenfall i
> hinbekommen. aber beim rest fehlt mir irgendwie der anfang. Ich wäre
> über hilfe echt dankbar.

Nun, bei (ii): Was hat das char. Polynom mit den Eigenwerten zu tun? Was haben Linearfaktoren mit Eigenwerten zu tun?

Bei (iii): Beachte, dass $r I - A$ invertierbar ist, wenn [mm] $\det(r [/mm] I - A) [mm] \neq [/mm] 0$ ist. Wenn du $r$ als Unbestimmte auffasst, was ist [mm] $\det(r [/mm] I - A)$? Benutze auch (ii).

Bei (iv): Multipliziere die rechte Seite doch mal mit $I - A$, und benutze (ii).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]