www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeMatrizenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Matrizenberechnung
Matrizenberechnung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenberechnung: Aus einem Gleichungssystem ?
Status: (Frage) beantwortet Status 
Datum: 22:26 Sa 30.07.2005
Autor: d.liang

Hi,

ich bräuchte bei dieser Aufgabe hilfe:

Man berechne die Matrizen X und Y, die das folgende Gleichungssytem erfüllen:

2AX +BY = C

3AX - 2Y = B

mit

A=  [mm] \pmat{ 2 & 1 \\ 3 & 2 } [/mm]

B=  [mm] \pmat{ -1 & 1 \\ 0 & -1 } [/mm]

C=  [mm] \pmat{ 1 & 2 \\ 2 & 0 } [/mm]



Das eigentlich ausrechnen später ist ja nicht schwer. Nur wie stelle ich diese beiden Gleichungen entsprechend nach X und Y um ?

Ich weiß auch nicht wie man bei dieser Art der Gleichungssyteme teilt, wenn man z.B. sowas hat:

AX = C

dann kann man ja schlecht sowas machen

X = C/A

oder ?


Danke schonmal !


        
Bezug
Matrizenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Sa 30.07.2005
Autor: Karl_Pech

Hallo d.liang,

> Man berechne die Matrizen X und Y, die das folgende
> Gleichungssytem erfüllen:
>  
> 2AX +BY = C
>  
> 3AX - 2Y = B
>  
> mit
>
> A=  [mm]\pmat{ 2 & 1 \\ 3 & 2 }[/mm]
>  
> B=  [mm]\pmat{ -1 & 1 \\ 0 & -1 }[/mm]
>  
> C=  [mm]\pmat{ 1 & 2 \\ 2 & 0 }[/mm]
>  
>
>
> Das eigentlich ausrechnen später ist ja nicht schwer. Nur
> wie stelle ich diese beiden Gleichungen entsprechend nach X
> und Y um ?


Ich würde sagen, wir rechnen die beiden Gleichungssysteme erstmal aus:


[m]\begin{gathered} 2AX + BY = C \Leftrightarrow \left( {\begin{array}{*{20}c} 4 & 2 \\ 6 & 4 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {x_{11} } & {x_{12} } \\ {x_{21} } & {x_{22} } \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} { - 1} & 1 \\ 0 & { - 1} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {y_{11} } & {y_{12} } \\ {y_{21} } & {y_{22} } \\ \end{array} } \right) = C \hfill \\ \Leftrightarrow \left( {\begin{array}{*{20}c} {4x_{11} + 2x_{21} } & {4x_{12} + 2x_{22} } \\ {6x_{11} + 4x_{21} } & {6x_{12} + 4x_{22} } \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} { - y_{11} + y_{21} } & { - y_{12} + y_{22} } \\ { - y_{21} } & { - y_{22} } \\ \end{array} } \right) = C \hfill \\ \Leftrightarrow \left( {\begin{array}{*{20}c} {4x_{11} + 2x_{21} - y_{11} + y_{21} } & {4x_{12} + 2x_{22} - y_{12} + y_{22} } \\ {6x_{11} + 4x_{21} - y_{21} } & {6x_{12} + 4x_{22} - y_{22} } \\ \end{array} } \right) = C \hfill \\ \end{gathered}[/m]


Dasselbe mußt Du auch mit dem anderen Gleichungssystem machen.

Das erste Gleichungssystem liefert dir nun 4 Gleichungen mit 8 Unbekannten. Das zweite Gleichungssystem liefert dir weitere 4 Gleichungen mit denselben 8 Unbekannten. Damit erhälst du ein Gleichungssystem mit 8 Gleichungen und 8 Unbekannten, welches Du z.B. mit dem MBGauß-Algorithmus lösen kannst.


> Ich weiß auch nicht wie man bei dieser Art der
> Gleichungssyteme teilt, wenn man z.B. sowas hat:
>  
> AX = C
>  
> dann kann man ja schlecht sowas machen
>  
> X = C/A
>  
> oder ?

Richtig, das funktioniert so nicht. Wenn dir A und C bekannt sind, und die sogenannte Inverse von A (man schreibt [mm] $A^{-1}$) [/mm] die gleiche Anzahl an Zeilen hat wie es Spalten in C gibt (Multiplikationskriterium), kannst Du stattdessen $X = [mm] A^{-1}C$ [/mm]
berechnen und das System wäre eindeutig lösbar, sonst ist es nicht eindeutig lösbar. Sieh dir doch mal []folgende Beschreibung zu Matrizen an.


Grüße
Karl





Bezug
        
Bezug
Matrizenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 So 31.07.2005
Autor: DaMenge

Hallo ihr beiden,

Also A und B sind doch offensichtlich invertierbar.

Wieso löst man dann also nicht die erste Gleichung nach X auf und setzt diese in die zweite Gleichung ein?

dann weiter nach Y auflösen und in in die nach X aufgelöste Gleichung eingesetzt ergibt die Lösung.

hier der Anfang : aus der ersten Gleichung folgt:
(1) [mm] $X=\bruch{1}{2}*A^{-1}*(C-BY)$ [/mm]

eingesetzt in die zweite ergibt sich:
[mm] $\bruch{3}{2}*C-\bruch{3}{2}BY-2Y=B$ [/mm]
[mm] $\gdw \bruch{3}{2}*C-(\bruch{3}{2}B-2*E)*Y=B$ [/mm]
(E ist Einheitsmatrix)

die Matrix vor dem Y ist dann auch invertierbar (sieht man leicht), also:
[mm] $Y=\left( \bruch{3}{2}B-2*E \right) ^{-1}(B-\bruch{3}{2}*C)$ [/mm]

dies dann mal tatsächlich ausrechnen und in (1) einsetzen, dann hat man doch die Lösung, oder übersehe ich etwas zu so später Stunde?


nächtliche Grüße
DaMenge

Bezug
                
Bezug
Matrizenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:44 So 31.07.2005
Autor: d.liang

Danke, DaMenge auf diese Weise konnte ich die Aufgabe lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]