www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeMatrizengleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Matrizengleichungssystem
Matrizengleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizengleichungssystem: Tipps zur Lösung.
Status: (Frage) beantwortet Status 
Datum: 15:50 So 09.07.2006
Autor: finns0rn

Hallo liebes Forum,

ich hab mich mal in meinem Zweifel hier angemeldet, denn ich komme nicht auf die Lösung und es wäre nett, wenn ihr mir auf die Sprünge helfen könntet. Ich habe folgende Gleichungen gegeben (Großbuchstaben beschreiben die Matrizen) und soll aus diesen Beiden die Matrizen X und Y berechnen (alle Matrizen der Dimension 2x2):

1.) [mm] 2AX + BY = C[/mm]
2.) [mm] 3AX - 2Y = B[/mm]

Die Operationen, die man mit Matrizen durchführen kann (insbesondere aller Besonderheiten) sind mir durchaus klar, mein Ansatz war nun eine Gleichung nach einer gesuchten Matrix aufzulösen und dann in die andere einzusetzen. Ich kann ja mal ein Beispiel machen, wie ich mir das so gedacht hatte:

Man nehme Gleichung 2.) und löse nach AX auf:

[mm]3AX - 2Y = B[/mm]

[mm]3AX = B + 2Y[/mm]

[mm]AX = \bruch{1}{3}B + \bruch{2}{3}Y[/mm]

Dann einsetzen in 1.):

[mm]2(\bruch{1}{3}B+\bruch{2}{3}Y) + BY = C[/mm]

[mm] \bruch{2}{3}B+\bruch{4}{3}Y + BY = C [/mm]

[mm] \bruch{4}{3}Y + BY = C- \bruch{2}{3}B [/mm]

[mm] (\bruch{4}{3}E + B)Y =C- \bruch{2}{3}B [/mm]

[mm] Y = (\bruch{4}{3}E + B)^{-1}*(C- \bruch{2}{3}B)[/mm]

Wo liegt mein Fehler und kann man diese Aufgabe auch einfacher lösen als ich es getan habe? Herzlichen Dank für die kompetente Hilfe,

Finn
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt....)


        
Bezug
Matrizengleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 So 09.07.2006
Autor: mathemak

Hallo!

> 1.) [mm]2AX + BY = C[/mm]
>  2.) [mm]3AX - 2Y = B[/mm]
>  

1') [mm] $6\,AX [/mm] + [mm] 3\,BY [/mm] = [mm] 3\,C$ [/mm]
2') [mm] $-6\,AX [/mm] + [mm] 4\,Y [/mm] = -2B$

1') + 2')

$ [mm] 3\,BY +4\,Y [/mm] = [mm] 3\,C [/mm] - [mm] 2\,B$ [/mm]

$ [mm] (3\,B [/mm] + [mm] 4\,E) \.Y [/mm] = [mm] 3\,C -2\,B$ [/mm]

$ Y = (3B+4E)^(-1) * [mm] (3\,C-2\,B)$ [/mm]



Gruß

mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]