www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungMatrizenmultiplikation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Matrizenmultiplikation
Matrizenmultiplikation < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Fr 02.01.2009
Autor: splin

Aufgabe
Es seien eine A (3x5)-Matrix, B eine (MxN)-Matrix, C eine (2x4)-Matrix und D eine (KxL)-Matrix mit D = [mm] AB^TC^T [/mm] . Damit diese Gleichung sinnvoll ist, muss gelten:
M=
N=
K=
L=

Zwei Matrizen können miteinander multipliziert werden wenn die Anzahl von Zeilen einer Matrix mit der Anzahl von Spalten anderen Matrix übereinstimmen.
Deswegen:
B(4x3)  4 da C 4 Spalten hat und 3 da A 3 Zeilen hat.
Wobei mit der 3 bin ich mir nicht so sicher da A mit großer Wahrscheinlichkeit in dem Term dort oben eine Determinante ist. Wie verfahre ich dann?

Und wie bestimme ich D bzw. K und L ?

Frohes Neues
Splin


        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Fr 02.01.2009
Autor: M.Rex

Hallo

> Es seien eine (3x5)-Matrix, b eine (MxN)-Matrix, C eine
> (2x4)-Matrix und D eine (KxL)-Matrix mit D = [mm]AB^TC^T[/mm] .
> Damit diese Gleichung sinnvoll ist, muss gelten:
>  M=
>  N=
>  K=
>  L=
>  Zwei Matrizen können miteinander multipliziert werden wenn
> die Anzahl von Zeilen einer Matrix mit der Anzahl von
> Spalten anderen Matrix übereinstimmen.

Soweit ist das okay. Ist A die 3x5 Matrix?

[mm] D=AB^{t}C^{t} [/mm]

Bedenke, dass D eine Matrix ist, die als Ergebnis der Multiplikation vorn
[mm] AB^{t}C^{t} [/mm] darstellbar ist. Und dessen Zeilen uns Spalten kannst du ermitteln.

Was du weisst, [mm] C^{t} [/mm] ist eine [mm] 2\times4-Matrix, [/mm] und A eine [mm] 3\times5-M. [/mm]

Also hast du:

[mm] \red{K}\times\blue{L}=(\red{3}\times\green{5})*(\green{N}\times\purple{M})*(\purple{2}\times\blue{4}) [/mm]

Kommst du jetzt weiter?

Marius


Bezug
                
Bezug
Matrizenmultiplikation: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:49 Fr 02.01.2009
Autor: froopkind

C ist eine (2x4) - Matrix
[mm] C^t [/mm] ist aber dann eine (4x2) - Matrix

mfg

Bezug
                
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Fr 02.01.2009
Autor: splin

Also dann:
K=3
L=4
N=5
M=2

zu der Korrektiurmitteilung:
Die Aufgabe habe ich 1:1 abgeschrieben (abgesehen von A (3x5) Matrix, dass ich schon korrigiert habe) :)
Heißt dieses [mm] C^T [/mm] nicht transponent und in Form eines Vektors geschrieben soll, sprich mit Komponenten untereinander?
Und wenn nicht muss ich dann die Zeilen und Spalten vertauschen?
Was ist das für eine Bezeichnung?


Bezug
                        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Fr 02.01.2009
Autor: froopkind

Hallo,
die Korrektur war auf die Antwort bezogen, weil M.Rex ein kleiner Fehler unterlaufen ist.

Transponieren heißt eigentlich "an der Diagonale spiegeln". Das kannst du bei []Wikipedia gut sehen.

Ich komme größtenteils auch auf deine Lösung, allerdings mit M = 4. (Bin mir aber mit der Reihenfolge nicht sicher, deshalb markiere ich als Teilweise beantwortet)

mfg

Bezug
                        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Fr 02.01.2009
Autor: Steffi21

Hallo,

M=4
N=5
K=3
L=2

A mal [mm] B^{T} [/mm]

(3*5) mal (5*4) ergibt (3*4) also ist B eine (4*5)

(3*4) mal (4*2) ergibt (3*2) also ist D ein (3*2)

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]