www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeMaximales Volumen eines Kegels
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Maximales Volumen eines Kegels
Maximales Volumen eines Kegels < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Volumen eines Kegels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mo 03.03.2008
Autor: Chloe

Aufgabe
für den bau einer kegelförmigen tüte mit möglichst großem fassungsvermögen wird aus einem quadratischem karton mit 1m seitenlänge ein kreisausschnitt geschnitten und zum kegel geformt. wie würden sie den karton ausschneiden? geben sie den mittelpunktswinkel an!

hi
also ich hab schon einige ansätze ausprobiert, aber irgendwie krieg ichs trotzdem nicht hin...
ich weiß dass die zielfunktion
[mm] V(h,r)=\bruch{1}{3}*\pi*r^2*h [/mm]  
sein müsste und ich habe mir auch schon ein paar mögliche nebenbedingungen überlegt:
[mm] h^2+r^2 [/mm] = [mm] s^2 [/mm]
[mm] U=2*\pi*r [/mm]
[mm] M=\pi*r*s [/mm]
die mir aber leider nichts bringen, weil ich dann statt der einen unbekannten variable, die ich ja ersetzen will, eine neue dazubekomme. könnt ihr mir vielleicht einen tipp geben, welche nebenbedingung mir da weiterhelfen könnte??

___________________________________________________________
ich habe diese frage in keinem forum auf anderen internetseiten gestellt

        
Bezug
Maximales Volumen eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mo 03.03.2008
Autor: M.Rex

Hallo und [willkommenmr]

Schau dir mal []diese Skizze an.


Es sollte klar sein, dass in deinem Fall s=0,5 sein wird, wenn du das Quadrat  um diesen Kreissektor "herumlegst".

Jetzt gilt auch:

[mm] \bruch{\alpha}{360}=\bruch{r}{s} [/mm]

Nutzt du nun den Satz des Pythagoras gilt:

s²=h²+r², also hier: (s=0,5)
[mm] 0,25=h²+r²\Rightarrow\wurzel{0,25-h²}=r [/mm]

Für das Volumen gilt jetzt:

[mm] V=\bruch{\pi*r²*h}{3} [/mm]

Setzt man nun [mm] \wurzel{0,25-h²}=r [/mm] ein, ergibt sich:

[mm] V(h)=\bruch{\pi*r²*h}{3}=\bruch{\pi*(\wurzel{0,25-h²})²*h}{3}=\bruch{\pi*(\bruch{1}{4}-h²)*h}{3}=\bruch{\pi}{3}(\bruch{1}{4}h-h³) [/mm]

Hieraus bestimmst du nun das Maximum, danach r (mit der oben genannten Formel) und wenn du r hast, kannst du nun auch den Winkel [mm] \alpha [/mm] bestimmen, den du ausschneiden musst.

Marius

Bezug
                
Bezug
Maximales Volumen eines Kegels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mo 03.03.2008
Autor: Chloe

vielen dank erst mal für deine schnelle antwort...
ich hab die aufgabe mal ausgerechnet und bin mir aber unsicher ob ich das richtig ausgerechnet habe weil die zahlen die ich rausbekomme sich so komisch anhören...vielleicht kannst du mir sagen ob ich einen fehler gemacht habe
h = [mm] \wurzel{1/12} [/mm]
r = 0.408
V = 0.05 [mm] m^3 [/mm]
[mm] \alpha [/mm] = 293,76°


Bezug
                        
Bezug
Maximales Volumen eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 03.03.2008
Autor: Steffi21

Hallo und Glückwunsch, das sind die Ergebnisse, Steffi

Bezug
                                
Bezug
Maximales Volumen eines Kegels: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Di 04.03.2008
Autor: Chloe

hi
vielen dank fürs überprüfen meiner ergebnisse :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]