www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMaximum Value Function
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Maximum Value Function
Maximum Value Function < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Value Function: Korrektur
Status: (Frage) überfällig Status 
Datum: 03:03 Fr 16.10.2015
Autor: Cccya

Aufgabe
Gegeben folgendes Optimierungsproblem: max [mm] 4x^{1/4}y^{1/4}+z [/mm]
s.t. x+y+kz [mm] \le [/mm] 10, x [mm] \ge [/mm] 0, y [mm] \ge [/mm] 0, z [mm] \ge [/mm] 0, k > 1.
Zeigen Sie wie sich die maximum value function in k verändert, ohne das envelope theorem zu nutzen.

Ich habe die value function als f(x(k),y(k),z(k),k) definiert, wobei x(k),y(k),z(k)
jeweils die Lösung des Optimierungsproblems bezeichnen.
Dann ist [mm] df(x(k),y(k),z(k),k)/dk=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial x} \bruch{\partial x(k)}{\partial k}+\bruch{\partial f(x(k),y(k),z(k),k)}{\partial y} \bruch{\partial y(k)}{\partial k}+ [/mm]
[mm] \bruch{\partial f(x(k),y(k),z(k),k)}{\partial z} \bruch{\partial z(k)}{\partial k}+\bruch{\partial f(x(k),y(k),z(k),k)}{\partial k} [/mm]



Aus den notwendigen Bedingungen für das Optimierungsproblem folgt aber bereits, dass [mm] \bruch{\partial f(x(k),y(k),z(k),k)}{\partial x}=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial y}=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial z}=0. [/mm] Somit bleibt [mm] df(x(k),y(k),z(k),k)/dk=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial k} [/mm] = [mm] -\lambda [/mm] z(k). Wobei [mm] \lambda [/mm] der erste Lagrangemultiplikator ist.
Kann ich das so machen?
Vielen Dank!

        
Bezug
Maximum Value Function: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 02:32 Sa 17.10.2015
Autor: Cccya

Ist die Frage irgendwie unzureichend formuliert? Bin für jeden Hinweis dankbar!

Bezug
                
Bezug
Maximum Value Function: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mo 19.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Maximum Value Function: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 So 18.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]