www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMaximumsprinzip
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Maximumsprinzip
Maximumsprinzip < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 So 17.09.2017
Autor: Paivren

Guten Tag!

Neue Runde:

Maximumsprinzip: Sei [mm] G\subseteq \IC [/mm] ein Gebiet, sei f: [mm] G-->\IC [/mm] holomorph. Für ein [mm] w\in [/mm] G gebe es eine Umgebung [mm] U\subseteq [/mm] G von w, sodass |f(w)| [mm] \ge [/mm] |f(z)| [mm] \forall z\in [/mm] U.

Dann ist f konstant.


Ich habe die Beweise dazu nachvollzogen, aber ist dieser Satz nicht ein Widerspruch in sich? Wenn der Betrag einer Funktion bei w größer ist als in der Umgebung, wie kann die Funktion dann konstant sein? Konstant heißt doch gerade auch, dass der Betrag eben überall gleich ist!

Verstehe ich was falsch? Oder könnte man den Satz auch einfach mit einem "=" formulieren?

MfG.

        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 17.09.2017
Autor: HJKweseleit


> Guten Tag!
>  
> Neue Runde:
>  
> Maximumsprinzip: Sei [mm]G\subseteq \IC[/mm] ein Gebiet, sei f:
> [mm]G-->\IC[/mm] holomorph. Für ein [mm]w\in[/mm] G gebe es eine Umgebung
> [mm]U\subseteq[/mm] G von w, sodass |f(w)| [mm]\ge[/mm] |f(z)| [mm]\forall z\in[/mm]
> U.
>  
> Dann ist f konstant.
>  
>
> Ich habe die Beweise dazu nachvollzogen, aber ist dieser
> Satz nicht ein Widerspruch in sich? Wenn der Betrag einer
> Funktion bei w größer ist als in der Umgebung, wie kann
> die Funktion dann konstant sein?

Weil [mm] \ge [/mm] auch = mit einschließt.

Die Aussage bedeutet im Umkehrschluss nämlich:

Eine holomorphe Funktion, die nicht konstant ist, hat folgende Eigenschaft: Innerhalb eines Gebietes, in dem und auf dessen Rand die Fkt. holomorph ist, befindet sich das betragsmäßige Maximum immer auf dem Rand (egal, wo man ihn wählt). Läge es in einem inneren Punkt, könnte man darum einen Rand ziehen, so dass innerhalb dieses Gebietes [mm] \subset [/mm] G dort das Maximum läge. Und das ist gerade nicht der Fall.

> Konstant heißt doch
> gerade auch, dass der Betrag eben überall gleich ist!
>  
> Verstehe ich was falsch? Oder könnte man den Satz auch
> einfach mit einem "=" formulieren?
>  
> MfG.


Bezug
                
Bezug
Maximumsprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:05 Di 19.09.2017
Autor: Paivren

Alles klar,

vielen Dank. So herum ist es verständlicher :)

Bezug
        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 25.09.2017
Autor: fred97


> Guten Tag!
>  
> Neue Runde:
>  
> Maximumsprinzip: Sei [mm]G\subseteq \IC[/mm] ein Gebiet, sei f:
> [mm]G-->\IC[/mm] holomorph. Für ein [mm]w\in[/mm] G gebe es eine Umgebung
> [mm]U\subseteq[/mm] G von w, sodass |f(w)| [mm]\ge[/mm] |f(z)| [mm]\forall z\in[/mm]
> U.
>  
> Dann ist f konstant.
>  
>
> Ich habe die Beweise dazu nachvollzogen, aber ist dieser
> Satz nicht ein Widerspruch in sich? Wenn der Betrag einer
> Funktion bei w größer ist als in der Umgebung,

Oben steht nur [mm] \ge [/mm] !!



> wie kann
> die Funktion dann konstant sein? Konstant heißt doch
> gerade auch, dass der Betrag eben überall gleich ist!
>  
> Verstehe ich was falsch? Oder könnte man den Satz auch
> einfach mit einem "=" formulieren?
>  
> MfG.


An der Antwort meines Vorredners gefällt mir nicht, das der Rand des Gebietes ins Spiel gebracht wird.

Ich formuliere das Maximimprinzip so:

Sei $ [mm] G\subseteq \IC [/mm] $ ein Gebiet, sei $ f:  G [mm] \to \IC [/mm] $ holomorph und sei f nicht konstant. Dann hat $|f|$ in G kein lokales Maximum.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]