www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMehrdimensionale Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Mehrdimensionale Integration
Mehrdimensionale Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 22:34 Mi 08.12.2004
Autor: rossi

Guten Abend ;)

komm leider nicht ganz weiter bei einer Aufgabe:

wir haben eine Funktion f(x,y) = [mm] (x+y)^{\alpha} [/mm]
auf A = ]0,1[x]0,1[ und sollen alle [mm] \alpha [/mm] bestimmen für die die Funktion intbar ist!

Für [mm] \alpha [/mm] >= 0 ist das ja kein Problem, aber weiter komm ich nicht!
Irgendwie habe ich machmal das Gefühl die Funktion kann immer integriert werden - aber das wäre ja dann witzlos ...


Gruß
Rossi

        
Bezug
Mehrdimensionale Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Do 09.12.2004
Autor: Julius

Hallo rossi!

Klar ist, dass dies genau für alle [mm] $\alpha>-2$ [/mm] der Fall ist, denn die iterierten Integrale existieren genau dafür, da

[mm] $\lim\limits_{x \to 0} \lim\limits_{y \to 0} \frac{1}{(\alpha+1)\cdot (\alpha + 2)} (x+y)^{\alpha +2}$ [/mm]

genau für [mm] $\alpha>-2$ [/mm] existiert.

Die Frage ist, ob das als Begründung ausreicht. Besser sieht man es auf jeden Fall, wenn man Polarkoordinaten einführt. Das scheint hier nur zunächst schlecht, weil der Integrationsbereich ein Quadrat und kein Kreis ist, da werden dann die Grenzen furchtbar. Andererseits interessiert eh nur die Umgebung um den Nullpunkt: Also könntest du den Einheitskreis als Integrationsbereich betrachten und dann Polarkoordinaten einführen. Dann siehst du sofort (viel einfacher als oben), dass dies genau für [mm] $\alpha>-2$ [/mm] der Fall ist, da man die Existenz des Integrals dann unmittelbar auf den eindimensionalen Fall zurückführen kann (das [mm] $\varphi$, [/mm] die Winkelfunktion, fliegt nämlich raus.)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]