www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMehrdimensionale W-verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Mehrdimensionale W-verteilung
Mehrdimensionale W-verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale W-verteilung: Erwartungwert
Status: (Frage) für Interessierte Status 
Datum: 18:52 Do 24.11.2005
Autor: WiWi

Ich habe diese Frage in keinem anderen Forum gestellt.

Hey,

folgendes Problem - auch, wenn sich das jetzt recht blöd anhört:

In meiner Mitschrift habe ich im Bereich zweidimensionaler Wahrscheinlichkeitsverteilung eine Formel für den bedingten Erwartungswert gefunden.

Was mich nun interessiert:

1. Wie habe ich mir E(y|x) vorzustellen? Wie kann ich das konkret fassen?

2. Gibt es für eine mehrdimensionale Wahrscheinlichkeitsverteilung einen anderen Weg, den Erwartungswert zu berechnen oder ist das schon der normale Erwartungswert?

Mit bestem Dank,

Wiwi

        
Bezug
Mehrdimensionale W-verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 So 27.11.2005
Autor: matux

Hallo WiWi!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
        
Bezug
Mehrdimensionale W-verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Mo 05.12.2005
Autor: Stefan

Hallo!

Mathematisch verbirgt sich hinter $E[Y|X]$ die $P$-fast sicher eindeutig bestimmte [mm] $\sigma(X)$-messbare, [/mm] integrierbare Zufallsvariable mit

$E[Y [mm] \cdot 1_C] [/mm] = E[E[Y|X] [mm] \cdot 1_C]$ [/mm]

für alle $C [mm] \in \sigma(X)$. [/mm]

Du kannst dir darunter den besten Schätzer von $Y$ vorstellen, wenn man $X$ kennt.

Im Falle der quadratischen Integrierbarkeit ist $E[Y|X]$ die orthogonale Projektion von $Y [mm] \in L^2(\Omega,{\cal A},P)$ [/mm] auf den abgeschlossenen Unterraum [mm] $L^2(\Omega, \sigma(X),P)$. [/mm]

Berechnen tut man ihn entweder über gegebene gemeinsame Dichten oder die üblichen Rechenregeln für bedingte Erwartungen.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]