www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMehrfache Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Mehrfache Integrale
Mehrfache Integrale < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfache Integrale: Dreiecksfläche
Status: (Frage) beantwortet Status 
Datum: 13:41 So 16.01.2005
Autor: kuroiya

Hallo!

Ich repetiere gerade ein wenig Analysis II und stecke irgendwie bei dem Problem hier fest, von dem ich glaube, dass es eigentlich einfach ist, aber irgendwie seh ich im Moment gerade nichts mehr:

Man wähle eine Parameterdarstellung des Dreiecks [mm] S_{2} [/mm] := {(x,y) : 0 [mm] \le [/mm] x [mm] \le [/mm] 1-y [mm] \le [/mm] 1} mit dem Quadrat Q := [mm] [0,1]^{2} [/mm] als Parameterbereich und rechne hierauf den Flächeninhalt von [mm] S_{2} [/mm] mit Hilfe der Transformationsformel aus. Dies ist die Aufgabe.

Ich habe schon Probleme bei der Aufstellung der Parameterdarstellung, ich habe es mit [mm] f(s,t)=\begin{cases} t, & \mbox{für } 0 \le t \le 1 \\ 1-s, & \mbox{für } 0 \le s \le 1 \end{cases} [/mm] versucht, habe aber irgendwie die direkte Vermutung, dass mich das überhaupt nicht weiterbringt. Ausserdem wäre die Funktionaldeterminante für so eine Abbildung gar nicht definiert, was bei der Transformationsformel dann auch unangenehm wäre.

Ich hoffe, jemand kann mir weiterhelfen!

        
Bezug
Mehrfache Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 04:15 Sa 05.02.2005
Autor: Stefan

Hallo!

Ich sehe wirklich nicht, wie hier die Transformationsformel zur Entfaltung kommen sollte.

Eine direkte Rechnung liefert jedenfalls die intutiv eh klare Aussage:

$A = [mm] \int\limits_0^1 \int\limits_0^{1-y}1\, [/mm] dxdy = [mm] \int\limits_0^1 (1-y)\, [/mm] dy = [mm] (y-\frac{1}{2}y^2) \vert_0^1 [/mm] = [mm] \frac{1}{2}$. [/mm]

Mit ist wirklich unklar, was ihr hier machen solltet. [kopfkratz3]

Naja...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]