Menge aller Abbildungen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:08 Fr 25.05.2012 | Autor: | Pacapear |
Hallo!
Ich verstehe nicht, warum die Anzahl aller beliebigen Abbildungen $f: N [mm] \to [/mm] R$ mit $|N|=n$ und $|R|=r$ [mm] $r^n$ [/mm] ist.
Ich habe mal versucht, mir ein Beispiel zu machen:
1) In der Menge N habe ich das Element [mm] n_1 [/mm] und in der Menge R die Elemente [mm] r_1 [/mm] und [mm] r_2 [/mm] . Dann kann ich eine Abbildung von [mm] n_1 [/mm] nach [mm] r_1 [/mm] machen und eine von [mm] n_1 [/mm] nach [mm] r_2. [/mm] Das sind zwei Abbildungen, da ergibt [mm] r^n=2^1=2 [/mm] , das stimmt noch.
2) In der Menge N habe ich die Elemente [mm] n_1 [/mm] und [mm] n_2 [/mm] und in der Menge R die Elemente [mm] r_1 [/mm] und [mm] r_2 [/mm] . Dann kann ich eine Abbildung von [mm] n_1 [/mm] nach [mm] r_1 [/mm] machen, eine von [mm] n_1 [/mm] nach [mm] r_2, [/mm] eine von [mm] n_2 [/mm] nach [mm] r_1 [/mm] und eine von [mm] n_2 [/mm] nach [mm] r_2. [/mm] Das sind vier Abbildungen, da ergibt [mm] r^n=2^2=4 [/mm] , das stimmt auch noch.
3) Jetzt habe ich in N drei Elemente [mm] n_1,n_2,n_3 [/mm] und ich R weiterhin zwei Elemente [mm] r_1 [/mm] und [mm] r_2. [/mm] Dann habe ich folgende Abbildungen: von [mm] n_1 [/mm] nach [mm] r_1, [/mm] von [mm] n_1 [/mm] nach [mm] r_2, [/mm] von [mm] n_2 [/mm] nach [mm] r_1, [/mm] von [mm] n_2 [/mm] nach [mm] r_2, [/mm] von [mm] n_3 [/mm] nach [mm] r_1 [/mm] und von [mm] n_3 [/mm] nach [mm] r_2. [/mm] Das sind 6 Abbildungen. Aber die Rechnung für die Anzahl ergibt [mm] r^n=2^3=2*2*2=8.
[/mm]
Genauso wenn ich jetzt 4 Elemente [mm] n_1,n_,n_3,n_4 [/mm] in die Menge N packe, es kommen immer nur zwei weitere Abbildungen dazu (wenn in R weiterhin zwei Elemente sind).
Wo ist mein Fehler?
Vielen Dank.
LG Nadine
|
|
|
|
Hallo Nadine,
> Hallo!
>
> Ich verstehe nicht, warum die Anzahl aller beliebigen
> Abbildungen [mm]f: N \to R[/mm] mit [mm]|N|=n[/mm] und [mm]|R|=r[/mm] [mm]r^n[/mm] ist.
>
> Ich habe mal versucht, mir ein Beispiel zu machen:
>
> 1) In der Menge N habe ich das Element [mm]n_1[/mm] und in der Menge
> R die Elemente [mm]r_1[/mm] und [mm]r_2[/mm] . Dann kann ich eine Abbildung
> von [mm]n_1[/mm] nach [mm]r_1[/mm] machen und eine von [mm]n_1[/mm] nach [mm]r_2.[/mm] Das sind
> zwei Abbildungen, da ergibt [mm]r^n=2^1=2[/mm] , das stimmt noch.
>
> 2) In der Menge N habe ich die Elemente [mm]n_1[/mm] und [mm]n_2[/mm] und in
> der Menge R die Elemente [mm]r_1[/mm] und [mm]r_2[/mm] . Dann kann ich eine
> Abbildung von [mm]n_1[/mm] nach [mm]r_1[/mm] machen, eine von [mm]n_1[/mm] nach [mm]r_2,[/mm]
> eine von [mm]n_2[/mm] nach [mm]r_1[/mm] und eine von [mm]n_2[/mm] nach [mm]r_2.[/mm] Das sind
> vier Abbildungen, da ergibt [mm]r^n=2^2=4[/mm] , das stimmt auch
> noch.
>
> 3) Jetzt habe ich in N drei Elemente [mm]n_1,n_2,n_3[/mm] und ich R
> weiterhin zwei Elemente [mm]r_1[/mm] und [mm]r_2.[/mm] Dann habe ich folgende
> Abbildungen: von [mm]n_1[/mm] nach [mm]r_1,[/mm] von [mm]n_1[/mm] nach [mm]r_2,[/mm] von [mm]n_2[/mm]
> nach [mm]r_1,[/mm] von [mm]n_2[/mm] nach [mm]r_2,[/mm] von [mm]n_3[/mm] nach [mm]r_1[/mm] und von [mm]n_3[/mm]
> nach [mm]r_2.[/mm] Das sind 6 Abbildungen.
Du vergisst hier noch zwei Abbildungen.
Eine Abbildung [mm] f:\{n_1,n_2,n_3\}\to\{r_1,r_2\} [/mm] hat die Gestalt
[mm] f(n_1)=r_a, f(n_2)=r_b, f(n_3)=r_c [/mm] mit [mm] a,b,c\in\{1,2\}.
[/mm]
Da die Bilder beliebig kombinierbar sind, ergibt das insgesamt 2*2*2=8 mögliche Abbildungen.
> Aber die Rechnung für die Anzahl ergibt [mm]r^n=2^3=2*2*2=8.[/mm]
>
> Genauso wenn ich jetzt 4 Elemente [mm]n_1,n_,n_3,n_4[/mm] in die
> Menge N packe, es kommen immer nur zwei weitere Abbildungen
> dazu (wenn in R weiterhin zwei Elemente sind).
Es gibt immer um einen Faktor 2 mehr Abbildungen, wenn ein Element in N dazukommt. Denn es gibt genau 2 Möglichkeiten eine Abbildung [mm] f:\{n_1,\ldots,n_k\}\to\{r_1,r_2\} [/mm] zu einer Abbildung [mm] F:\{n_1,\ldots,n_{k+1}\}\to\{r_1,r_2\} [/mm] fortzusetzen.
Entweder [mm] F(n_{k+1})=r_1 [/mm] oder [mm] F(n_{k+1})=r_2.
[/mm]
LG
|
|
|
|