www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMenge in formaler Beschreibung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Menge in formaler Beschreibung
Menge in formaler Beschreibung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in formaler Beschreibung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:03 Fr 24.04.2009
Autor: durden88

Aufgabe
Geben sie  für die folgenden Mengen eine formale Beschreibung an:

a) alle durch 3 Teilbaren ganzen Zahlen
b) die Polstellen der Tangensfunktion
c) alle Stammbrüchen zwischen 0 und 1/3

Hallo, also folgende Aufgaben muss ich Lösen und habe ansatzweise eine Ahnung, aber halt nicht richtig.

Zu a)( x [mm] \in \IZ [/mm]  \ x/3= (und hier weiss ich nicht recht) )
zu b) Nun ich weiss das eine Polstelle eine undefinierter Bereich ist also p/0 sein muss, mehr aber auch nicht..
zu c) Stammbruch...auch noch nie gehört, währe nett wenn ihr mir anregungen geben könntet! Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Menge in formaler Beschreibung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Fr 24.04.2009
Autor: Teufel

Hi und willkommen hier!

Mengen gibt man z.B. so an: [mm] M=\{n \in \IN | n>3\}=\{4; 5; 6; ...\}, [/mm] also nichts mit runden Klammern drum herum!

Zu a)
Wenn eine ganze Zahl n durch 3 teilbar sein soll, was für eine Art Zahl muss dann [mm] \bruch{n}{3} [/mm] sein? Genau, auch eine ganze Zahl. Daher kannst du deinen Ansatz so umändern:
[mm] M=\{n \in \IZ | \bruch{n}{3} \in \IZ\} [/mm]

Klar? In Worten also: Die Menge M besteht aus alle ganzen Zahlen n, für die auch [mm] \bruch{n}{3} [/mm] wieder ganze Zahlen sind.

Zu b)
Erstmal musst du schauen, wo denn die Polstellen der Tangensfunktion sind. Da [mm] tan(x)=\bruch{sin(x)}{cos(x)} [/mm] sind die Polstellen da, wo cos(x)=0 ist, wie du ja schon richtig angedeutet hast.
In Worten wäre also die gesuchte Menge: Die Menge aller (reellen) Zahlen x für die gilt, dass cos(x)=0 ist. Das musst du nur noch schön verpacken.

c)
Stammbrüche haben als Zähler eine 1 und als Nenner eine natürliche Zahl.

Bei Rückfragen melde dich einfach nochmal! Und wenn du Lösungen hast, kannst du sie auch gerne noch mal hier rein stellen, damit wir drübergucken können. :)
[anon] Teufel

Bezug
                
Bezug
Menge in formaler Beschreibung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Fr 24.04.2009
Autor: durden88

In Aufgabe b und c sind aber nicht angegeben aus welchen, ja wie sagt man Elementen also  [mm] \IN \IQ [/mm] etc. das sein soll soll ich das dann aus logischem denken auch dahin schreiben?

zu c) [mm] \IQ= \{n/x \wedge n \in \IZ \wedge x \in \IN / n/x >0 \wedge n/x < 1/3\} [/mm]

Bezug
                        
Bezug
Menge in formaler Beschreibung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Fr 24.04.2009
Autor: Teufel

Dann kannst du einfach [mm] \IR [/mm] nehmen. Hätten wir auch bei a) machen können, also $ [mm] M=\{x \in \IR | \bruch{x}{3} \in \IZ\} [/mm] $. Damit würden ka Kommazahlen eh schon ausscheiden. Aber da man weiß, dass eh nur ganze Zahlen in Frage kommen, kann man das durch [mm] \IZ [/mm] schon besser präzisieren, schadet ja nicht.

Also nimm bei b)  und c) auch einfach an, dass die Grundmenge [mm] \IR [/mm] ist (bei b) braucht man es eh, weil da ja [mm] \pi [/mm] vorkommt).

Zu c)
Stimmt nicht ganz, du sagst ja, dass der Zähler jede ganze Zahl sein kann, aber Stammbrüche haben als Zähler immer nur die Zahl 1. Und hier kann man auch davon ausgehen, dass die Grundmenge [mm] \IQ [/mm] ist, da ja Brüche gesucht werden.

PS: [mm] \IN, \IQ [/mm] u.s.w. sind Zahlenmengen. Und wenn du einen neuen Beitrag verfasst, hast du unter dem Eingabefeld Eingabehilfen, die dir erlauben, auch Brüche etc. schön darzustellen.

[mm] \bruch{1}{2} [/mm] kannst du z.B. mit \bruch{1}{2} machen.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]