www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenMenge in komplexe Zahlenebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Menge in komplexe Zahlenebene
Menge in komplexe Zahlenebene < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in komplexe Zahlenebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:10 So 13.11.2011
Autor: Xepa

Aufgabe
[mm] M:=\{z\in\IC:Re(iz)\in[0,2\pi]\} [/mm]
Menge soll nun in komplexer Zahlenebene dargestellt werden

Hallo,
ich habe obere Aufgabe und bin soweit, dass ich Re(iz) ausgerechnet habe, also so:
Re(iz)=Re[i(x+iy)]

Als Ergebnis bekomme ich dann -y heraus.

Erst einmal, ist das richtig? Und falls ja, wie soll ich das nun zeichnerisch darstellen? Einfach den Wertebereich in -y einsetzen?

Bin echt über jede Anmerkung und jeden Tipp dankbar!

        
Bezug
Menge in komplexe Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 So 13.11.2011
Autor: Diophant

Hallo,

deine Rechnung ist richtig, obwohl es auch eine einfachere Überlegung gibt, dazu weiter unten etwas.

Setzen wir x=i*z. Re(x) ist dann gleich -y und damit gleich -Im(z). Aus welchem, Intervall muss dan der Imaginärteil von z sein?

Eine einfachere Überlegung wäre die, dass die Multiplikation mit i jede komplexe Zahl um 90° in positiver Drehrichtung in der komplexen Ebene dreht. Mit diesem Wissen könnte man die Antwortt sofort ohne weitere Rechnung geben...

Gruß, Diophant

Bezug
                
Bezug
Menge in komplexe Zahlenebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 13.11.2011
Autor: Xepa

Hallo,

vielen Dank erst einmal für deine Antwort. Irgendwie scheine ich da aber noch Verständnisprobleme zu haben.

Meine Idee wäre gewesen, dass es die komplette Fläche unterhalb der x-Achse (Re-Achse) bis zu -2 pi ist.

Kann das sein, oder bin ich da auf dem Holzweg?

Bezug
                        
Bezug
Menge in komplexe Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 13.11.2011
Autor: Diophant

Hallo,

> Meine Idee wäre gewesen, dass es die komplette Fläche
> unterhalb der x-Achse (Re-Achse) bis zu -2 pi ist.
>  
> Kann das sein, oder bin ich da auf dem Holzweg?

es ist genau richtig. Und die Ränder gehören dazu, weil es ein geschlossenes Intervall ist.

Gruß, Diophant

Bezug
                                
Bezug
Menge in komplexe Zahlenebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 So 13.11.2011
Autor: Xepa

Perfekt, war mir da nur nicht sicher, da ich mit dem Thema noch nicht wirklich betraut bin.

Vielen Dank für deine Hilfe und einen schönen Sonntag noch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]