www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Menge schnitt/Vereinigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Menge schnitt/Vereinigung
Menge schnitt/Vereinigung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge schnitt/Vereinigung: tipp,korrektur
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 09.05.2015
Autor: PeterPaul

Aufgabe
Bestimmen sie $ [mm] \bigcup_{i \in I} M_{i}$ [/mm]  und  $ [mm] \bigcap_{i \in I} M_{i}$ [/mm]  in den folgenden Fällen:

$ a) I:= [mm] \IN, M_{i}.= \{k \in \IZ , -i \leq k \leq i \} \forall [/mm] i [mm] \in [/mm] I$

$ b) I:= [mm] \IR, M_{i}:=[i,i+1] \forall [/mm] i [mm] \in [/mm] I$

$ c) I:= [mm] \IZ, M_{i}.= \{x \in \IN; \exists k \in \IZ$ mit $kx = i \} \forall [/mm] i [mm] \in [/mm] I$

$d) I:= [mm] \IN, M_{i}.= \{\frac{z}{i}; z \in \IZ\} \forall [/mm] i [mm] \in [/mm] I$

a)

$ [mm] \bigcup_{i \in I} M_{i} [/mm] =  [mm] \bigcup_{i \in \IN} \{k \in \IZ , -i \leq k \leq i \} \forall [/mm] i [mm] \in \IN [/mm] = [mm] \{\IZ\}$ [/mm]

$ [mm] \bigcap_{i \in I} M_{i} [/mm] =  [mm] \bigcap_{i \in \IN} \{k \in \IZ , -i \leq k \leq i \} \forall [/mm] i [mm] \in \IN =\{k\} [/mm] $

b)



$I:= [mm] \IR, M_{i}:=[i,i+1] \forall [/mm] i [mm] \in [/mm] I$

$ [mm] \bigcup_{i \in I} M_{i} [/mm] =  [mm] \bigcup_{i \in \IN} [/mm] [i,i+1]  [mm] \forall [/mm] i [mm] \in \IN =\{\IR\} [/mm] $


beim schnitt habe ich keine idee :/


c) $I:= [mm] \IZ, M_{i}.= \{x \in \IN; \exists k \in \IZ$ mit $kx = i \} \forall [/mm] i [mm] \in [/mm] I$

$ [mm] \bigcup_{i \in I} M_{i} [/mm] =  [mm] \bigcup_{i \in \IN} \{x \in \IN; \exists k \in \IZ$ mit $kx = i \} \forall [/mm] i [mm] \in \IN [/mm] = [mm] \{\IZ\}$ [/mm]


beim durchschnitt weiss ich auch nicht


d)

I:= [mm] \IN, M_{i}.= \{\frac{z}{i}; z \in \IZ\} \forall [/mm] i [mm] \in [/mm] I

$ [mm] \bigcup_{i \in I} M_{i} [/mm] =  [mm] \bigcup_{i \in \IN} \{\frac{z}{i}; z \in \IZ\} \forall [/mm] i [mm] \in \IN [/mm] = [mm] \{\IQ\}$ [/mm]



$ [mm] \bigcap_{i \in I} M_{i} [/mm] =  [mm] \bigcap_{i \in \IN} \{\frac{z}{i}; z \in \IZ\} \forall [/mm] i [mm] \in \IN [/mm] = [mm] \{\emptyset\}$ [/mm]

        
Bezug
Menge schnitt/Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Sa 09.05.2015
Autor: sissile

a)
Bezüglich des Durchschnittes. Was soll k als Antwort sein?
[mm] \bigcap_{i\in M_i} [/mm] = [mm] \{ x: x \in M_i \forall i \in I\} [/mm]
0 ist z.B sicher in jedem der [mm] M_i [/mm] denn -i [mm] \le [/mm] 0 [mm] \le [/mm] i für alle i [mm] \in \IN. [/mm]
Gehört bei euch 0 auch zu den natürlichen Zahlen? Denn dann besteht der Durschnitt nur aus 0.

b)
Es gibt i,j [mm] \in \IR [/mm] sodass [mm] M_i \cap M_j [/mm] = [mm] \emptyset [/mm]
Dementsprechend ist $ [mm] \bigcap_{i \in I} M_{i} [/mm] $ = [mm] \emptyset [/mm]

c)
Für den Durchschnitt:
Du suchst ein x in den natürlichen Zahlen sodass [mm] x\in M_i \forall [/mm] i [mm] \in \IZ [/mm]
z.B : x [mm] \in M_1: \exists [/mm] k [mm] \in \IZ: [/mm] kx=1
D.h. k=1/x
Da k eine ganze Zahl sein muss und x natürlich ist käme nur x=1 in Frage.
Andererseits ist x=1 auch in allen [mm] M_i. [/mm] Daraus folgt, dass der Durchschnitt nur aus 1 besteht.

Liebe Grüße,
sissi

Bezug
                
Bezug
Menge schnitt/Vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 10.05.2015
Autor: PeterPaul

hallo bei uns ist [mm] \IN [/mm] ohne 0 also müsste dann der der schnitt nicht nur aus aus [mm] \{1,-1\} [/mm] bestehen?


sind die vereinigugen denn richtig und die d) auch?


lieben gruss

Bezug
                        
Bezug
Menge schnitt/Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mo 11.05.2015
Autor: sissile

Hallo
Ja dann ist bei a)
[mm] \bigcap_{i \in I} M_{i} [/mm] = [mm] \bigcap_{i \in \IN} \{k \in \IZ | -i \leq k \leq i \}=\{0,1,-1\} [/mm]

Übrigens du brauchst da nicht [mm] \forall [/mm] i [mm] \in \IN [/mm] nochmals hinter den Durschnitt/Vereinigung zu schreiben sowie du es in Beitrag 1 gemacht hast. Du bildest ja schon mit [mm] \bigcap_{i\in\IN}M_i, [/mm] den Durschnitt über alle [mm] M_i [/mm] mit i [mm] \in \IN. [/mm] Da hat nochmal [mm] \forall [/mm] i [mm] \in \IN [/mm] nichts verloren.

Ja ich denke alles was ich nicht in betrag 2 bemängelt habe ist korrekt.

LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]