Menge skizzieren < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:58 So 21.02.2010 | Autor: | JanW1989 |
Aufgabe | Bestimmen und skizzieren sie folgende Menge komplexer Zahlen:
[mm] M=\{z \in \IC | \pi \le arg((z-1)^3) \le 2\pi\} [/mm] |
Hallo,
ich kann ja sagen, dass z-1 einer Verschiebung des Kreises in positiver x-Richtung entspricht und das Argument den Winkel entsprechend einschränkt. Nun muss ja aber noch potenziert werden und das macht mir Probleme. Nach der Moivre Formel wird ja zum Einen der Radius mit 3 potenziert und zum Anderen der Winkel mit 3 multipliziert. Demnach Hätte ich ja dann einen Winkelbereich von [mm] 3\pi [/mm] bis [mm] 6\pi. [/mm] Nun würde ich so lange [mm] 2\pi [/mm] subtrahieren bis ich wieder in dem Bereich von 0 bis [mm] 2\pi [/mm] liege aber dann könnte ich ja entweder von [mm] \pi [/mm] bis [mm] 2\pi [/mm] gehen oder von [mm] \pi [/mm] bis 0. Skizziert also entweder den Halbkreis unterhalb oder oberhalb der x-Achse.
Oder was wäre wenn ich mit 4 potenzieren würde. Dann könnte ich ja entweder von 0 bis [mm] 2\pi [/mm] zeichnen oder von 0 bis 0, also gar nicht zeichnen.
Würde mich freuen wenn mir jemand eine kurze Erklärung geben könnte.
Gruß, Jan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:41 So 21.02.2010 | Autor: | abakus |
> Bestimmen und skizzieren sie folgende Menge komplexer
> Zahlen:
> [mm]M=\{z \in \IC | \pi \le arg((z-1)^3) \le 2\pi\}[/mm]
> Hallo,
>
> ich kann ja sagen, dass z-1 einer Verschiebung des Kreises
> in positiver x-Richtung entspricht und das Argument den
> Winkel entsprechend einschränkt. Nun muss ja aber noch
> potenziert werden und das macht mir Probleme. Nach der
> Moivre Formel wird ja zum Einen der Radius mit 3 potenziert
> und zum Anderen der Winkel mit 3 multipliziert.
Hallo, du musst, wenn du von den Eigenschafen zum [mm] (z-1)^3 [/mm] auf die Eigenschaften von z-1 schließen willst, die Argumente NICHT mal 3, sondern durch 3 rechnen.
Wenn [mm] arg((z-1)^3 [/mm] zwischen [mm] \pi [/mm] und [mm] 2\pi [/mm] liegt, dann liegt
arg(z-1) entweder zwischen [mm] \pi/3 [/mm] und [mm] 2\pi/3 [/mm] oder zwischen [mm] 3\pi/3 [/mm] und [mm] 4\pi/3 [/mm] oder zwischen [mm] 5\pi/3 [/mm] und [mm] 6\pi/3 [/mm] . Das sind also drei 60°-Sektoren mit jeweils einer 60°-Lücke dazwischen. Diese Sektoren berühren sich mit den Spitzen bei z=1.
Gruß Abakus
> Demnach
> Hätte ich ja dann einen Winkelbereich von [mm]3\pi[/mm] bis [mm]6\pi.[/mm]
> Nun würde ich so lange [mm]2\pi[/mm] subtrahieren bis ich wieder in
> dem Bereich von 0 bis [mm]2\pi[/mm] liege aber dann könnte ich ja
> entweder von [mm]\pi[/mm] bis [mm]2\pi[/mm] gehen oder von [mm]\pi[/mm] bis 0.
> Skizziert also entweder den Halbkreis unterhalb oder
> oberhalb der x-Achse.
> Oder was wäre wenn ich mit 4 potenzieren würde. Dann
> könnte ich ja entweder von 0 bis [mm]2\pi[/mm] zeichnen oder von 0
> bis 0, also gar nicht zeichnen.
>
> Würde mich freuen wenn mir jemand eine kurze Erklärung
> geben könnte.
> Gruß, Jan
|
|
|
|