www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMengen, Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Mengen, Abbildungen
Mengen, Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen, Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Sa 11.11.2006
Autor: Informacao

Aufgabe
Seien M,N endliche Mengen. Bezeichne mit m die Anzahl der Elemente in M und mit n die Anzahl der Elemente in N. Sei f:M [mm] \to [/mm] N eine Abbildung.

a) Sei m=n. Dann ist f injektiv, genau dann, wenn f surjektiv ist.
b) Falls f surjektiv ist, gilt m [mm] \le [/mm] n.

Guten Abend :-)

Ich weiß mal wieder nicht, ob diese Behauptungen stimmen und ich weiß auch nicht, wie ich das bestimmen soll.. Könnt ihr mir mal bitte helfen!
Also die Begrifflichkeiten etc sind mir aber alle eben klar geworden.

vIele Grüße
Informacao

        
Bezug
Mengen, Abbildungen: Tips
Status: (Antwort) fertig Status 
Datum: 21:40 Sa 11.11.2006
Autor: DaMenge

Hi,

naja das ist ja alles recht anschaulich und soll nur dieÜbung mit den Begriffen stärken, deshalb werde ich auch nur recht beispielhaft schreiben, damit du dir noch die exakte Formulierung überlegen kannst.

also zu a)
eine genau-dann-wenn aussage beweist man hier wohl am einfachsten indem du beide Richtungen seperat zeigst, also:
1) sei f injektiv und m=n, dann folgt f ist surjektiv
2) sei f surjektiv und m=n, dann folgt f ist injektiv

hierbai kannst du dann jeweils einfach per Widerspruch arbeiten, also bei 1) angenommen f wäre nicht surjektiv, dann gibt es also mindestens ein Element ,was nicht getroffen wird, aber f muss n Bilder haben, wovan aber nur höchstens m-1=n-1 unterschiedliche angenommen werden können...
(na, welchen Widerspruch liefert das schubfachprinzip?)

bei 2) analog..

zu b) kann man auch wieder schön per Widerspruch zeigen, angenommen f wäre surjektiv aber es gilt m>n (f kann aber nur höchstens n unterschiedliche Bilder haben....)

viele Grüße
DaMenge

Bezug
                
Bezug
Mengen, Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Sa 11.11.2006
Autor: Informacao

...okay..danke für die schnelle antwort!

(das waren nur aufgaben zum ankreuzen..also ob die behauptung stimmt..?!? ... ich musste nichts beweisen)

Informacao

Bezug
                
Bezug
Mengen, Abbildungen: doch noch eine frage
Status: (Frage) beantwortet Status 
Datum: 11:35 So 12.11.2006
Autor: Informacao

hey,

also stimmen beide behauptungen oder?

Lg,
informacao

Bezug
                        
Bezug
Mengen, Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 So 12.11.2006
Autor: DaMenge

hi,

kurz und knapp: ja

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]