www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMengenbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Mengenbeweise
Mengenbeweise < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweise: Frage
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 23.10.2004
Autor: steelscout

Hi,
hab hier nen ganzen Haufen Mengenbeweise zu bewältigen, allerdings vorher nie mit sowas zu tun gehabt. Ich weiß zwar jetzt, was die Sachverhalte ausdrücken, aber beweisen?
Z.b. der Beweis das X [mm] \cap [/mm] Y  [mm] \subseteq [/mm] X  [mm] \subseteq [/mm] X [mm] \cup [/mm] Y
(X,Y: Mengen)
Wenn man es sich vorstellt total logisch. Aber wie soll ich sowas nachweisen. Ich bitte um nen Stoß in die richtige Richtung *g*

thx steele

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Mengenbeweise: Tipp!
Status: (Antwort) fertig Status 
Datum: 12:22 Sa 23.10.2004
Autor: Stefan

Hallo steelscout!

Du musst zeigen, dass jedes Element aus $X [mm] \cap [/mm] Y$ in $X$ liegt und jedes Element aus $X$ in $X [mm] \cup [/mm] Y$.

Das ist einfach, aber man muss es sauber aufschreiben (und daraum geht es bei solchen Aufgaben zu Beginn des Studiums).

Also:


$z [mm] \in [/mm] X [mm] \cap [/mm] Y$

[mm] $\Rightarrow \quad [/mm] [(z [mm] \in [/mm] X) \ [mm] \wedge [/mm] \ (z [mm] \in [/mm] Y)]$

[mm] $\Rightarrow \quad [/mm] z [mm] \in [/mm] X$

[mm] $\Rightarrow \quad [/mm] [(z [mm] \in [/mm] X)\  [mm] \vee [/mm] \ (z [mm] \in [/mm] Y)]$

[mm] $\Rightarrow \quad [/mm] z [mm] \in [/mm] X [mm] \cup [/mm] Y$.


Vermutlich hast du noch ähnliche Aufgaben, an denen du solche Beweise jetzt mal selbstständig üben kannst. :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Mengenbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 23.10.2004
Autor: DSJuster

Was bedeuten

[mm] \subseteq [/mm]
[mm] \supseteq [/mm]
[mm] \wedge [/mm]
[mm] \vee [/mm]

Bezug
                        
Bezug
Mengenbeweise: Erklärung
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 23.10.2004
Autor: Hanno

Hallo DSJuster.

Um mal ebenso kurz zu antworten, wie du gefragt hast:
A ist eine Teilmenge von B [mm] $:\gdw A\subseteq [/mm] B [mm] \gdw B\supseteq [/mm] A [mm] \gdw:$ [/mm] B ist eine Obermenge von A.
A und B [mm] $:\gdw A\wedge [/mm] B$
A oder B [mm] $:\gdw A\vee [/mm] B$.

Also ich persönlich streube mich, gegen solche aus zwei Wörtern bestehenden "Fragen" ordentliche Antworten zu geben. Ich weiß nicht, wie andere das sehen, aber wenn das so weiter geht war das meine letzte Antwort auf deine Fragen.

Gruß,
Hanno

Bezug
                                
Bezug
Mengenbeweise: Kleine Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:10 Sa 23.10.2004
Autor: steelscout

Erstmal vielen Dank, der Ansatz hat mir sehr weitergeholfen!

Nur ein Fragezeichen bleibt noch:
An anderer Stelle wird gefragt "Man zeige weiter, aus X [mm] \subseteq [/mm] Y folgt A [mm] \setminus [/mm] Y  [mm] \subseteq [/mm] A [mm] \setminus [/mm] X"

Ich hab also versucht:
z [mm] \in [/mm] X also auch z [mm] \in [/mm] Y, da X [mm] \subseteq [/mm] Y
-> z  [mm] \not\in [/mm] A [mm] \setminus [/mm] Y und z [mm] \not\in [/mm] A [mm] \setminus [/mm] X
Aber daraus kann ich nicht zeigen das A [mm] \setminus [/mm] Y  [mm] \subseteq [/mm] A [mm] \setminus [/mm] X, oder?

Bezug
                                        
Bezug
Mengenbeweise: idee
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 23.10.2004
Autor: andreas

wenn du zeigen willst, dass [m] A \subseteq B [/m] gilt, dann bist du meistens gut beraten zu zeigen:[m] x \in A \Longrightarrow x \in B [/m].

also betrachte nun mal [m]z \in A \setminus Y \Longleftrightarrow (z \in A) \wedge (z \not\in Y) [/m] ...

jetzt musst du nur noch begründen, warum [m] z \not\in X [/m] und schon bist du fertig!


grüße
andreas

Bezug
                                                
Bezug
Mengenbeweise: letzte Frage
Status: (Frage) beantwortet Status 
Datum: 22:33 So 24.10.2004
Autor: steelscout

Wie verhält es sich beim Beweis von Mengengleichheit? Analog zum Teilmengenbeweis?
Also wenn ich zeigen soll, dass aus X [mm] \subseteq [/mm] Y folgt X  [mm] \cap [/mm] Y = X bzw. X [mm] \cup [/mm] Y = Y , reicht es dann wieder zu sagen
es gibt ein z [mm] \in [/mm] X -> damit auch z [mm] \in [/mm] Y
damit auch z  [mm] \in [/mm] X  [mm] \cap [/mm] Y bzw. X [mm] \cup [/mm] Y
Genügt das oder wie beweise ich die Gleichheit mit X bzw. Y?

Bezug
                                                        
Bezug
Mengenbeweise: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 25.10.2004
Autor: Stefan

Hallo!

Um die Gleichheit

$X [mm] \cap [/mm] Y = X$

zu beweisen, musst du zwei Dinge zeigen:

1) $X [mm] \cap [/mm] Y [mm] \subset [/mm] Y$,
2) $X [mm] \subset [/mm] X [mm] \cap [/mm] Y$.

Jetzt zeigst du 1) und 2) wie gewohnt.

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]