www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreMengengleichheit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Naive Mengenlehre" - Mengengleichheit zeigen
Mengengleichheit zeigen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengengleichheit zeigen: Gilt folgende Gleichheit?
Status: (Frage) beantwortet Status 
Datum: 17:11 Di 16.12.2008
Autor: Alex__

Hi,

gilt folgende Mengengleichheit für beliebige Mengen A, A', B, C:

$(A [mm] \cap [/mm] A') [mm] \cup (B\cap [/mm] C) = (A [mm] \cup [/mm] B) [mm] \cap [/mm] (A' [mm] \cup [/mm] C)$.

Besten Dank und Gruß,

Alex.

        
Bezug
Mengengleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Di 16.12.2008
Autor: Alex__

Hm, im Allg. gilt das wohl nicht (setzte z.B. $A:= [mm] \emptyset$). [/mm] Muss mal weiterüberlegen...

Bezug
                
Bezug
Mengengleichheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 16.12.2008
Autor: Alex__

Hm, wenn $A:= [mm] \emptyset$, [/mm] dann folgt

[mm] $(\emptyset \cap [/mm] A') [mm] \cup [/mm] (B [mm] \cap [/mm] C)$
[mm] =$(\emptyset \cup [/mm] B) [mm] \cap (\emptyset \cup [/mm] C) [mm] \cap [/mm] (A' [mm] \cup [/mm] B) [mm] \cap (A'\cup [/mm] C)$
=$B [mm] \cap [/mm] (A' [mm] \cup [/mm] B) [mm] \cap [/mm] C [mm] \cap (A'\cup [/mm] C)$
=$B  [mm] \cap [/mm] C$.

Es ist also doch nicht falsch für $A:= [mm] \emptyset$, [/mm] deshalb möchte ich meine erste Frage noch einmal stellen.

LG
Alex

Bezug
                        
Bezug
Mengengleichheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mi 17.12.2008
Autor: angela.h.b.


> Hm, wenn [mm]A:= \emptyset[/mm], dann folgt
>  
> [mm](\emptyset \cap A') \cup (B \cap C)[/mm]
>  =[mm](\emptyset \cup B) \cap (\emptyset \cup C) \cap (A' \cup B) \cap (A'\cup C)[/mm]
>  
> =[mm]B \cap (A' \cup B) \cap C \cap (A'\cup C)[/mm]
>  =[mm]B \cap C[/mm].
>  
> Es ist also doch nicht falsch für [mm]A:= \emptyset[/mm], deshalb
> möchte ich meine erste Frage noch einmal stellen.

Hallo,

warum?

Die Frage wurde doch bereits geklärt: i.a. gilt die Aussage nicht.

Daß es gewisse Fälle gibt, wo sie doch richtig ist, ist ja kein Widerspruch dazu.

Du solltest Dich lieber auf die Suche nach einem Beispiel machen, welches die Aussage widerlegt.

Gruß v. Angela


Bezug
                                
Bezug
Mengengleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Mi 17.12.2008
Autor: Alex__

Hi,

wer hat denn bisher die Frage geklärt. Im Allg. gilt das in der Tat nicht und zwar z.B. dann, wenn sich alle Mengen gegenseitig schneiden. In meinem speziellen Fall konnte man aber $A [mm] \cap [/mm] X' = B [mm] \cap [/mm] X = [mm] \emptyset$ [/mm] voraussetzen - das hatte ich weiter oben nicht mit angegeben. Nu ja, letztlich hat sich die Frage erledigt.

LG
Alex

Bezug
                                        
Bezug
Mengengleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mi 17.12.2008
Autor: angela.h.b.


> Hi,
>
> wer hat denn bisher die Frage geklärt.

Hallo,

der reverend hat die gestellte Frage beantwortet.

> In meinem speziellen Fall konnte man
> aber [mm]A \cap X' = B \cap X = \emptyset[/mm] voraussetzen - das
> hatte ich weiter oben nicht mit angegeben.

Nun, dann ist es wenig verwunderlich, daß es nicht berücksichtigt werden konnte.

> Nu ja, letztlich
> hat sich die Frage erledigt.

Sag' ich doch.

Gruß v. Angela


Bezug
        
Bezug
Mengengleichheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 16.12.2008
Autor: reverend

Für beliebige Mengen A, A', B, C gilt:

[mm] (A\cap A')\cup(B\cap C)=(A\cup B)\cap(A'\cup C)\cap(A\cup C)\cap(A'\cup \a{}B) [/mm]

Grüße,
rev

Bezug
                
Bezug
Mengengleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Di 16.12.2008
Autor: Alex__

Hi rev,

besten Dank. Ja, das gilt und es folgt durch zweimalige Anwendung der Distributivregel.

LG
Alex

Bezug
                        
Bezug
Mengengleichheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Di 16.12.2008
Autor: reverend

Genau. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]