www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Mengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Mengenlehre
Mengenlehre < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 09.11.2008
Autor: trination

Aufgabe
Sind folgende Aussagen wahr oder falsch?

a) Jeder Bruch [mm] \bruch{a}{b} [/mm] ,a,b [mm] \in\IN [/mm] ist als Dezimalzahl darstellbar.
b) Jede Dezimalzahl ist als Bruch [mm] \bruch{a}{b} [/mm] ,a,b [mm] \in\IN [/mm] darstellbar.
c) [mm] \wurzel{2} [/mm] = [mm] \bruch{2048,499813}{1448,508109} [/mm]

a)  [mm] \in\IN [/mm] schließ die "0" ja nicht ein, deswegen würde ich sagen, dass es eine wahre Aussage ist.

b) Gegenbeispiel die Zahl [mm] \pi [/mm] ...lässt sich nur Näherungsweise darstellen, deswegen falsch Aussage.

c) Wenn ich den Bruch in Taschenrechner eingebe und ihn mit dem Ergebnis von [mm] \wurzel{2} [/mm] vergleiche, dann sind die Ergebnisse identisch. Ist damit die Aussage wahr?


Stimmt das so?

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 So 09.11.2008
Autor: M.Rex


> Sind folgende Aussagen wahr oder falsch?
>  
> a) Jeder Bruch [mm]\bruch{a}{b}[/mm] ,a,b [mm]\in\IN[/mm] ist als Dezimalzahl
> darstellbar.
>  b) Jede Dezimalzahl ist als Bruch [mm]\bruch{a}{b}[/mm] ,a,b [mm]\in\IN[/mm]
> darstellbar.
>  c) [mm]\wurzel{2}[/mm] = [mm]\bruch{2048,499813}{1448,508109}[/mm]
>  a)  [mm]\in\IN[/mm] schließ die "0" ja nicht ein, deswegen würde
> ich sagen, dass es eine wahre Aussage ist.

Ist es. Mach mal die Unterscheidung "periodische Dezimalzahl" und "Nichtperiodische Dezimalzahl".

>
> b) Gegenbeispiel die Zahl [mm]\pi[/mm] ...lässt sich nur
> Näherungsweise darstellen, deswegen falsch Aussage.

Korrekt. Das kann man auch so stehen lassen.

>  
> c) Wenn ich den Bruch in Taschenrechner eingebe und ihn mit
> dem Ergebnis von [mm]\wurzel{2}[/mm] vergleiche, dann sind die
> Ergebnisse identisch. Ist damit die Aussage wahr?

nein, das ist ein "Rundungsproblem". [mm] \vurzel{2} [/mm] ist irrational, also gibt es keine Bruchdarstellung, dazu gibt es (auch hier im Forum) einige Beweise.

>  
>
> Stimmt das so?

Marius

Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 09.11.2008
Autor: trination

b un c sind geklärt und einleuchtend.

wegen a)

Wie soll ich das aufschreiben.

Brüche wie: 1/2 lassen sich eindeutig widergeben in dem Fall 0,5...
Brüche wie: 3/13 lassen sich näherungsweise als Dezimalzahl angeben
Brüche wie: x/0 lassen sich gar nicht darstellen

So?

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 09.11.2008
Autor: reverend

Vorab zu c): Dein Rechner ist einfach zu kurz. Meiner zeigt als Quadrat des angegebenen Bruches 2,0000000000874679862799136767393...

Jetzt aber zu a):
Jede rationale Zahl ist als Bruch darstellbar (das ist ja die Definition). In der Darstellung in einem beliebigen Zahlensystem gibt es dabei nur zwei mögliche Ergebnisse:
1) Die Darstellung hat eine endliche Länge, z.B. im Dezimalsystem [mm] \bruch{1}{16}=0,0625 [/mm]
2) Die Darstellung hat keine endliche Länge, ist aber ab einer bestimmten Stelle periodisch, z.B. [mm] \bruch{1}{7}=0,142857142857142857142857142857142857142857... [/mm]
Dafür kennst Du ja die Schreibweise [mm] \bruch{1}{7}=0,\overline{142857} [/mm]

Übrig bleiben dann nur noch Zahlen, die nicht endlich lang dargestellt werden können und nicht-periodisch sind. Sie können tatsächlich nicht als Bruch dargestellt werden, sind irrational und (i.a.) transzendent.

Bezug
                                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 09.11.2008
Autor: trination

Kann ich das nicht so beantworten:


Brüche wie: 1/2 lassen sich eindeutig widergeben in dem Fall 0,5...
Brüche wie: 3/13 lassen sich näherungsweise als Dezimalzahl angeben
Brüche wie: x/0 lassen sich gar nicht darstellen

Also quasie 2 Fälle a,b [mm] \in\IN [/mm] bzw. a,b [mm] \in\IN0 [/mm]

Bezug
                                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 So 09.11.2008
Autor: reverend

Nein, das ist keine richtige Antwort.

Eine rationale Zahl [mm] \bruch{a}{b}, a,b\in\IN [/mm] lässt sich genau dann in endlicher Länge darstellen, wenn b nur Primteiler enthält, die auch die Basis des Zahlensystems enthält. Darum ist [mm] \bruch{1}{5^5} [/mm] z.B. so kurz: 0,00032.

Andere rationale Zahlen sind exakt als Dezimalzahl darstellbar, aber eben nicht endlich lang. Mit Einführung der Notation einer Periodik sind aber auch sie in endlicher Länge aufzuschreiben (auch wenn sie natürlich unendlich weitergehen).

[mm] \bruch{x}{0} [/mm] ist schlicht nicht definiert und daher auch keine rationale Zahl. Außerdem war [mm] \IN_0 [/mm] ja gar nicht gefragt. Um alle nicht-negativen rationalen Zahlen zu erhalten, hätte die Definition lauten müssen: [mm] a\in\IN_0, b\in\IN [/mm]

Bezug
        
Bezug
Mengenlehre: Grundsatzfrage
Status: (Antwort) fertig Status 
Datum: 17:32 So 09.11.2008
Autor: Al-Chwarizmi

Zu dieser Aufgabenstellung müsste zuerst eine wichtige
grundsätzliche Frage geklärt werden:

Was ist gemeint mit "als Dezimalzahl darstellbar" ?

sind da nur abbrechende Dezimalzahlen zugelassen ?

sind periodische Zahlen ausser jenen mit Nullperiode
auch zugelassen ?

gilt eine Zahl als "darstellbar", wenn man zwar ihre
unendlich vielen Stellen nicht wirklich ausrechnen kann,
aber dazu ein theoretisch gültiges Rezept hat ?

Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]