www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbare funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Messbare funktion
Messbare funktion < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbare funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 13.07.2012
Autor: marianne88

Guten Tag

Seien [mm] $\mathcal{F}_1,\mathcal{F}_2$ [/mm] zwei [mm] $\sigma$-Algebren [/mm] auf einem Raum [mm] $\Omega$. [/mm] Ich weiss, dass für eine Funktion [mm] $\theta$ [/mm] auf [mm] $\Omega$ [/mm] gilt: [mm] $\theta^{-1}(\mathcal{F}_2) [/mm] = [mm] \mathcal{F}_1$. [/mm] D.h. [mm] $\theta$ [/mm] ist [mm] $\mathcal{F}_1-\mathcal{F}_2$ [/mm] messbar. Wieso gilt nun, dass jede [mm] $\mathcal{F}_1$ [/mm] messbare Funktion von der Form [mm] $X\circ \theta$ [/mm] ist, wobei $X$ [mm] $\mathcal{F}_2$ [/mm] messbar ist?

Liebe Grüsse

Marianne88

        
Bezug
Messbare funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mo 23.07.2012
Autor: felixf

Moin,

> Seien [mm]\mathcal{F}_1,\mathcal{F}_2[/mm] zwei [mm]\sigma[/mm]-Algebren auf
> einem Raum [mm]\Omega[/mm]. Ich weiss, dass für eine Funktion
> [mm]\theta[/mm] auf [mm]\Omega[/mm] gilt: [mm]\theta^{-1}(\mathcal{F}_2) = \mathcal{F}_1[/mm].
> D.h. [mm]\theta[/mm] ist [mm]\mathcal{F}_1-\mathcal{F}_2[/mm] messbar. Wieso
> gilt nun, dass jede [mm]\mathcal{F}_1[/mm] messbare Funktion von der
> Form [mm]X\circ \theta[/mm] ist, wobei [mm]X[/mm] [mm]\mathcal{F}_2[/mm] messbar ist?

dieses Resultat ist (in etwas allgemeinerer Form) als Faktorisierungssatz fuer messbare Funktionen bekannt. Eine Version (fuer spezielle Funktionen) findet sich etwa in der []Wikipedia.

LG Felix


Bezug
                
Bezug
Messbare funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Mo 23.07.2012
Autor: marianne88

Super! Herzlichen Dank felix!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]