www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMessbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Messbarkeit
Messbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Ansatz
Status: (Frage) beantwortet Status 
Datum: 01:28 Mi 16.03.2011
Autor: bedburger84

Aufgabe
[Dateianhang nicht öffentlich]


Mir fehlt hier völlig ein Ansatz. Ich weiß, dass stetige Funktionen zum Beipspiel messbar sind, diese Funktion ist jedoch nicht stetig.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 16.03.2011
Autor: fred97

Ich nehme an [mm] \IR' [/mm] ist = [mm] $\IR \cup \{\infty, - \infty\}$. [/mm] Wenn das so ist, so ist

              $ [mm] 1_{(- \infty,0]}$ [/mm]  messbar (warum ?).

Was weißt Du über Produkte und Summen messbarer Funktionen ?

FRED

Edit: ich glaube eher, dass [mm] $\IR'=\IR^1= \IR$ [/mm] ist. Stimmts ?

Bezug
                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Mi 16.03.2011
Autor: bedburger84

Dass diese auch wieder messbar sind. Das reicht also als Begründung. Dass die Funktion als Summe messbarer Größen wieder messbar ist?

Bezug
                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mi 16.03.2011
Autor: fred97


> Dass diese auch wieder messbar sind. Das reicht also als
> Begründung. Dass die Funktion als Summe messbarer Größen
> wieder messbar ist?

Mir würde das reichen.

FRED


Bezug
                                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 16.03.2011
Autor: bedburger84

Und wie zeige ich dann, dass |x| messbar ist? Oder [mm] 2^x*1_{(\infty,0)}(x)? [/mm]

Bezug
                                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 16.03.2011
Autor: fred97


> Und wie zeige ich dann, dass |x| messbar ist?

|x| ist stetig


> Oder
> [mm]2^x*1_{(\infty,0)}(x)?[/mm]  


[mm] 2^x [/mm] ist stetig.

[mm] 1_{(-\infty,0)} [/mm]  ist messbar, weil (- [mm] \infty,0) [/mm]  messbar ist.


FRED


Bezug
                                                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Mi 16.03.2011
Autor: bedburger84

*Schleier vor den Augen verschwindet*

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]