www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbarkeit Produktraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Messbarkeit Produktraum
Messbarkeit Produktraum < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit Produktraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 10.03.2014
Autor: hula

Hallöööchen

Folgendes Problem ist beim Studium von Vorlesungsnotizen aufgetaucht. Sei [mm] $C:=\{f:[0,\infty)\to\mathbb{R}|f \text{ ist stetig}\}$ [/mm] der Raum aller stetigen Funktionen von der nicht negativen rellen Achse nach [mm] $\mathbb{R}$. [/mm] $C$ kann als Produktraum aufgefasst werden [mm] $\mathbb{R}^{[ 0,\infty)}$. [/mm] Wir definieren darauf die [mm] $\sigma$-Algebra $\mathcal{A}$ [/mm] die alle Projektionen [mm] $\pi_t:C\to\mathbb{R}$, [/mm] i.e. [mm] $\pi_t(f)=f(t)$ [/mm] messbar macht, also

[mm] $\mathcal{A}=\sigma\{\pi^{-1}_t(E):t\in[0,\infty),E\in\mathcal{B}(\mathbb{R}\}$ [/mm]

Nun sein $K$ eine Borelmenge in [mm] $\mathbb{R}^2$ [/mm] und ich betrachte die Menge

[mm] $A:=\{f\in C| (f(0),f(1))\in E\}$ [/mm]

Wieso ist [mm] $A\in\mathcal{A}$? [/mm]

        
Bezug
Messbarkeit Produktraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 10.03.2014
Autor: fred97


> Hallöööchen
>  
> Folgendes Problem ist beim Studium von Vorlesungsnotizen
> aufgetaucht. Sei [mm]C:=\{f:[0,\infty)\to\mathbb{R}|f \text{ ist stetig}\}[/mm]
> der Raum aller stetigen Funktionen von der nicht negativen
> rellen Achse nach [mm]\mathbb{R}[/mm]. [mm]C[/mm] kann als Produktraum
> aufgefasst werden [mm]\mathbb{R}^{[ 0,\infty)}[/mm]. Wir definieren
> darauf die [mm]\sigma[/mm]-Algebra [mm]\mathcal{A}[/mm] die alle Projektionen
> [mm]\pi_t:C\to\mathbb{R}[/mm], i.e. [mm]\pi_t(f)=f(t)[/mm] messbar macht,
> also
>  
> [mm]\mathcal{A}=\sigma\{\pi^{-1}_t(E):t\in[0,\infty),E\in\mathcal{B}(\mathbb{R}\}[/mm]
>  
> Nun sein [mm]K[/mm] eine Borelmenge in [mm]\mathbb{R}^2[/mm] und ich
> betrachte die Menge
>  
> [mm]A:=\{f\in C| (f(0),f(1))\in E\}[/mm]


Hier meinst Du wohl

[mm]A:=\{f\in C| (f(0),f(1))\in K\}[/mm]



>  
> Wieso ist [mm]A\in\mathcal{A}[/mm]?  


Wir setzen [mm] K_1:=\{x \in \IR: (x,y) \in K\} [/mm] und [mm] K_2:=\{y \in \IR: (x,y) \in K\}. [/mm]

Dann sind [mm] K_1,K_2 \in \mathcal{B}(\mathbb{R}) [/mm]

Weiter seien [mm] X_1:=\{f \in C: f(0) \in K_1\} [/mm] und [mm] X_2:=\{f \in C: f(1) \in K_2\}. [/mm]

Dann sind [mm] X_1,X_2 \in \mathcal{A}, [/mm] also auch

     $ [mm] X_1 \cap X_2 \in \mathcal{A}$. [/mm]

Nun überlege Dir, dass gilt:

[mm]A=\{f\in C| (f(0),f(1))\in K\}=X_1 \cap X_2[/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]