www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbarkeit von Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Messbarkeit von Funktion
Messbarkeit von Funktion < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit von Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 02.02.2009
Autor: shoggi

Aufgabe
Zeigen Sie, dass die Funktion

f: [mm] \mathbb{R}\rightarrow\mathbb{R}, \quad f(x)=\begin{cases} x^2, & \mbox{falls } x\neq\mbox{0} \\ 5, & \mbox{falls } x= \mbox{0} \end{cases} [/mm]
messbar ist.

Hallo, ich bin gerade dabei eine Klausur über Masstheorie und Integrationstheorie vorzubereiten. Bei der oben gestellten Frage handelt es sich um eine alte Prüfungsaufgabe.
Meine Idee war folgende: Man nehme (X,M) ein messbarer Raum, [mm] (Y,\tau_Y) [/mm] ein topologischer Raum und [mm] f:X\rightarrow [/mm] Y eine Funktion mit f(X)=Y und [mm] Y=\bar{\mathbb{R}} [/mm] und zeige dann folgende implikation:

[mm] \forall a\in \mathbb{R}:\,f^{-1}((a,\infty])\in\,M\Rightarrow f\, [/mm] messbar

leider habe ich keinen schimmer ob ich hier auf dem richtigen Weg bin und, wenn ja, wie man so etwas zeigt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

vielen Dank schon im Voraus

        
Bezug
Messbarkeit von Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 Di 03.02.2009
Autor: felixf

Hallo

> Zeigen Sie, dass die Funktion
>  
> f: [mm]\mathbb{R}\rightarrow\mathbb{R}, \quad f(x)=\begin{cases} x^2, & \mbox{falls } x\neq\mbox{0} \\ 5, & \mbox{falls } x= \mbox{0} \end{cases}[/mm]
>  
> messbar ist.

Wenn du weisst, dass $g(x) = [mm] x^2$ [/mm] messbar ist, dann geh doch wie folgt vor:

Sei $M [mm] \subseteq \IR$ [/mm] eine messbare Menge. Du musst ja zeigen, dass [mm] $f^{-1}(M)$ [/mm] messbar ist.

Betrachte doch mal [mm] $g^{-1}(M \setminus \{ 0 \})$. [/mm] Kannst du damit [mm] $f^{-1}(M)$ [/mm] beschreiben? (Mach ruhig eine Fallunterscheidung: $0 [mm] \in [/mm] M$ oder $0 [mm] \not\in [/mm] M$.)

>  Hallo, ich bin gerade dabei eine Klausur über Masstheorie
> und Integrationstheorie vorzubereiten. Bei der oben
> gestellten Frage handelt es sich um eine alte
> Prüfungsaufgabe.
>  Meine Idee war folgende: Man nehme (X,M) ein messbarer
> Raum, [mm](Y,\tau_Y)[/mm] ein topologischer Raum und [mm]f:X\rightarrow[/mm]
> Y eine Funktion mit f(X)=Y und [mm]Y=\bar{\mathbb{R}}[/mm] und zeige
> dann folgende implikation:
>  
> [mm]\forall a\in \mathbb{R}:\,f^{-1}((a,\infty])\in\,M\Rightarrow f\,[/mm]
> messbar

Willst du das zeigen? Oder hast du das schon? Wenn ersteres, das ist fuer diese Aufgabe zu kompliziert. Im zweiteren Fall schau dir doch mal [mm] $f^{-1}((a, \infty])$ [/mm] an. Kannst du die Menge in Abhaengigkeit von $a$ beschreiben? (Du darfst ruhig Fallunterscheidungen machen.)

LG Felix


Bezug
                
Bezug
Messbarkeit von Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:34 Mi 04.02.2009
Autor: shoggi

Hallo, und danke für die schnelle Antwort.
Leider habe ich witerhin Probleme die Aufgabe richtig zu lösen. Bisher hatten wir es eigentlich immer mit Funktionen zu tun die monoton und stetig waren, und somit war es relativ leicht ihre Messbarkeit zu zeigen...

Wenn ich [mm] g^{-1}(M\backslash{\{0\}}) [/mm] nehme, und [mm] M=\mathbb{R}^+, [/mm] dann erhalte ich nicht nur die Elemente von f(x), sondern auch elemente aus [mm] \mathbb{Q} [/mm] wie z.B. [mm] \sqrt{2}, [/mm] die sind ja dann nicht in [mm] \mathbb{R}... [/mm] weiterhin verstehe ich nicht wie ich eine Fallunterscheidung vornehmen kann?

Gruss Joel

Bezug
                        
Bezug
Messbarkeit von Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Do 05.02.2009
Autor: felixf

Hallo Joel

> Hallo, und danke für die schnelle Antwort.
>  Leider habe ich witerhin Probleme die Aufgabe richtig zu
> lösen. Bisher hatten wir es eigentlich immer mit Funktionen
> zu tun die monoton und stetig waren, und somit war es
> relativ leicht ihre Messbarkeit zu zeigen...
>  
> Wenn ich [mm]g^{-1}(M\backslash{\{0\}})[/mm] nehme, und
> [mm]M=\mathbb{R}^+,[/mm] dann erhalte ich nicht nur die Elemente von
> f(x), sondern auch elemente aus [mm]\mathbb{Q}[/mm] wie z.B.
> [mm]\sqrt{2},[/mm] die sind ja dann nicht in [mm]\mathbb{R}...[/mm] weiterhin
> verstehe ich nicht wie ich eine Fallunterscheidung
> vornehmen kann?

Kann es sein, dass dir nicht ganz klar sind, was [mm] $\IQ$ [/mm] und [mm] $\IR$ [/mm] sind? [mm] $\sqrt{2}$ [/mm] ist definitiv ein Element von [mm] $\IR$, [/mm] und keins von [mm] $\IQ$: $\IQ$ [/mm] ist eine echte Teilmenge von [mm] $\IR$. [/mm]

Ausserdem brauchst du gar nicht so konkret mit Zahlen rumzuhantieren.

Mach das ganze doch mal abstrakter:

Du hast eine messbare Menge $M [mm] \subseteq \IR$ [/mm] und zwei messbare Funktion [mm] $g_1, g_2 [/mm] : [mm] \IR \to \IR$. [/mm] Daraus kannst du jetzt eine Funktion $f : [mm] \IR \to \IR$, [/mm] $x [mm] \mapsto \begin{cases} g_1(x) & \text{wenn } x \in M, \\ g_2(x) & \text{sonst} \end{cases}$ [/mm] machen. Zeige, dass $f$ auch messbar ist.

Ueberleg dir mal, wie du diese, abstraktere Aufgabe loesen wuerdest.

(Hast du zumindest eine Idee, wie du $M$, [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] waehlen kanns damit deine Funktion fuer $f$ rauskommt?)

LG Felix


Bezug
                                
Bezug
Messbarkeit von Funktion: Lösungsversuch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Do 05.02.2009
Autor: shoggi

Ich Esel habe in der Hitze des Gefechts tatsächlich [mm] \mathbb{R} [/mm] und [mm] \mathbb{Q} [/mm] vertauscht... Danke für den Hinweis!!
Hier jetzt ein Lösungsversuch:

-------------------------------------------------------------------------------------------------------------
Es sei a [mm] \in \mathbb{R}. [/mm] Z.Z.: [mm] f^{-1}((a,\infty]) [/mm] ist eine Borelmenge (da def.Bereich [mm] \mathbb{R}) [/mm]

Fall1: [mm] a\geq5 [/mm]
[mm] f^{-1}((a,\infty])=(-\infty,\sqrt{-a})\cup(\sqrt{a},\infty), [/mm] somit Borelmenge und Messbar

Fall2: 0<a<5
[mm] f^{-1}((a,\infty])=(-\infty,\sqrt{-a})\cup(\sqrt{a},\infty)\cup\{5\}, [/mm] somit Borelmenge und Messbar

Fall3: [mm] a\leq [/mm] 0
[mm] f^{-1}((a,\infty])=\mathbb{R}, [/mm] ist messbar

[mm] \Rightarrow [/mm] f ist Messbar
-----------------------------------------------------------------------------------------------------------------------

vielen Dank für die Hilfe!!! Kann mir zum Schluss noch jemand sagen ob das so korrekt ist?

Gruss
Joel

Bezug
                                        
Bezug
Messbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Do 05.02.2009
Autor: felixf

Hallo

>  Hier jetzt ein Lösungsversuch:
>  
> -------------------------------------------------------------------------------------------------------------
>  Es sei a [mm]\in \mathbb{R}.[/mm] Z.Z.: [mm]f^{-1}((a,\infty])[/mm] ist eine
> Borelmenge (da def.Bereich [mm]\mathbb{R})[/mm]
>  
> Fall1: [mm]a\geq5[/mm]
>  
> [mm]f^{-1}((a,\infty])=(-\infty,\sqrt{-a})\cup(\sqrt{a},\infty),[/mm]
> somit Borelmenge und Messbar
>  
> Fall2: 0<a<5
>  
> [mm]f^{-1}((a,\infty])=(-\infty,\sqrt{-a})\cup(\sqrt{a},\infty)\cup\{5\},[/mm]
> somit Borelmenge und Messbar
>  
> Fall3: [mm]a\leq[/mm] 0
>  [mm]f^{-1}((a,\infty])=\mathbb{R},[/mm] ist messbar
>  
> [mm]\Rightarrow[/mm] f ist Messbar
>  
> -----------------------------------------------------------------------------------------------------------------------
>  
> vielen Dank für die Hilfe!!!

Bitte!

> Kann mir zum Schluss noch
> jemand sagen ob das so korrekt ist?

Ja, das stimmt so.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]