www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Metrik (Mengen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Metrik (Mengen)
Metrik (Mengen) < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik (Mengen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Do 17.11.2011
Autor: Laura87

Aufgabe
Beweisen Sie folgende Behauptungen:

1) [mm] \bigcup_{n\in \IN} ]0,n[=]0,\infty[ [/mm]

2) [mm] \bigcup_{n\in \IN} ]\bruch{1}{n^2},1]=]0,1] [/mm]

3) [mm] \bigcap_{n\in \IN} [/mm] ]-q,q[= {0}, wobei [mm] \IQ^+={q\in \IQ| q>0} [/mm]

4) [mm] \bigcap_{n\in \IN} [0,q]=\emptyset [/mm]

Hallo,

also ich bin hier etwas verunsichert. Wir hatten in der Uni ein Beispiel dafür und ich habe die ersten beiden jetzt mal analog gemacht.

zu1)

[mm] \subseteq \forall [/mm] x [mm] \in [/mm] L [mm] \exists n\in \IN [/mm] : x [mm] \in ]0,n[\le ]0,\infty[ [/mm]


[mm] \supseteq [/mm] Sei x [mm] \in ]0,\infty[ [/mm] dann [mm] \exists n_1 [/mm] mit x [mm] \in ]0,n_1[ [/mm] mit [mm] n=max{n_1} [/mm]

analog dazu habe ich die 2) gemacht.

Ist das richtig?

Gruß Laura

        
Bezug
Metrik (Mengen): Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Do 17.11.2011
Autor: fred97


> Beweisen Sie folgende Behauptungen:
>  
> 1) [mm]\bigcup_{n\in \IN} ]0,n[=]0,\infty[[/mm]
>  
> 2) [mm]\bigcup_{n\in \IN} ]\bruch{1}{n^2},1]=]0,1][/mm]
>  
> 3) [mm]\bigcap_{n\in \IN}[/mm] ]-q,q[= {0}, wobei [mm]\IQ^+={q\in \IQ| q>0}[/mm]
>  
> 4) [mm]\bigcap_{n\in \IN} [0,q]=\emptyset[/mm]
>  Hallo,
>  
> also ich bin hier etwas verunsichert. Wir hatten in der Uni
> ein Beispiel dafür und ich habe die ersten beiden jetzt
> mal analog gemacht.
>  
> zu1)
>
> [mm]\subseteq \forall[/mm] x [mm]\in[/mm] L [mm]\exists n\in \IN[/mm] : x [mm]\in ]0,n[\le ]0,\infty[[/mm]

Vielleicht meinst Du es richtig. Du hast es aber sehr unglücklich formuliert.


[mm] \subseteq [/mm] : sei x [mm] \in \bigcup_{n\in \IN} [/mm] ]0,n[. Dann gibt es ein n [mm] \in \IN [/mm] mit: x<n. Dann ist x [mm] \in [/mm] ]0,n[ und damit auch x [mm] \in [/mm] ]0, [mm] \infty[ [/mm] .


>  
>
> [mm]\supseteq[/mm] Sei x [mm]\in ]0,\infty[[/mm] dann [mm]\exists n_1[/mm] mit x [mm]\in ]0,n_1[[/mm]

Ja, und damit haben wir: x [mm] \in \bigcup_{n\in \IN} [/mm] ]0,n[.

FRED


> mit [mm]n=max{n_1}[/mm]

Was soll das bedeuten ?

>  
> analog dazu habe ich die 2) gemacht.
>  
> Ist das richtig?
>  
> Gruß Laura


Bezug
        
Bezug
Metrik (Mengen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 17.11.2011
Autor: Laura87

vielen dank für die korrektur!

Die zweite würde ich dann genauso machen, aber bei den anderen beiden bin ich mir nicht sicher.

Ich habe jetzt bei der 3.:

[mm] \subseteq [/mm]   Sei  [mm] x\in \bigcap_{q\in \IQ^+}]-q,q[. [/mm] Dann gibt es ein (oder heißt es für alle gilt, weil es ja keine Vereinigung, sondern ein Schnitt ist) q [mm] \in \IQ [/mm] mit x<q. Dann ist x [mm] \in [/mm] [-q,q[ und damit auch [mm] x\in [/mm] {0}.


[mm] \supseteq [/mm]  

  Sei x [mm] \in \bigcap_{q\in \IQ^+} [/mm] {0}. Dann gilt [mm] \forall [/mm] q > 0,  [mm] x\in [/mm] ]-q,q[ und damit haben wir [mm] \x [/mm] in [mm] \bigcap_{q \in \IQ^+} [/mm]  ]-q,q[

Bezug
                
Bezug
Metrik (Mengen): Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Do 17.11.2011
Autor: fred97


> vielen dank für die korrektur!
>  
> Die zweite würde ich dann genauso machen, aber bei den
> anderen beiden bin ich mir nicht sicher.
>  
> Ich habe jetzt bei der 3.:
>  
> [mm]\subseteq[/mm]   Sei  [mm]x\in \bigcap_{q\in \IQ^+}]-q,q[.[/mm] Dann gibt
> es ein (oder heißt es für alle gilt, weil es ja keine
> Vereinigung, sondern ein Schnitt ist) q [mm]\in \IQ[/mm] mit x<q.
> Dann ist x [mm]\in[/mm] [-q,q[ und damit auch [mm]x\in[/mm] {0}.

Das ist Murks.

Sei  [mm]x\in \bigcap_{q\in \IQ^+}]-q,q[.[/mm].

Dann gilt x [mm] \in [/mm] ]-q,q[ für alle q [mm] \in \IQ^+. [/mm] Insbesondere ist dann $-1/n<x<1/n für alle n [mm] \in \IN. [/mm] Mit n [mm] \to \infty [/mm] erhält man x=0

>  
>
> [mm]\supseteq[/mm]  
>
> Sei x [mm]\in \bigcap_{q\in \IQ^+}[/mm] {0}. Dann gilt [mm]\forall[/mm] q >
> 0,  [mm]x\in[/mm] ]-q,q[ und damit haben wir [mm]\x[/mm] in [mm]\bigcap_{q \in \IQ^+}[/mm]
>  ]-q,q[  

Auch das ist völlig chaotisch.

Aus x = 0  folgt natürlich trivialerweise: -q<x<q für alle q [mm] \in \IQ^+. [/mm] Somit  $ [mm] x\in \bigcap_{q\in \IQ^+}]-q,q[. [/mm] $

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]