Metriken nachweisen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Mi 11.07.2012 | Autor: | clemenum |
Aufgabe | Man zeige: Auf einem VR [mm] $(a_i)_{i\in \mathbb{N} }$ [/mm] mit [mm] $\sum_{i=0}^{\infty}a_i^2<\infty [/mm] $ ist [mm] $d((a_i),(b_i)) [/mm] := [mm] \sqrt{\sum_{i=0}^{\infty} (a_i - b_i)^2 } [/mm] $ eine Metrik. |
Nun, die Symmetrie und die Definitheit waren mir so leicht zu zeigen, dass ich es nicht hineinstellen muss um sie kontrollieren zu lassen.
Jedoch hapert es bei der Dreiceksungleichung, da muss ich ja zeigen: [mm] $\sqrt{\sum_{i=0}^{\infty} (a_i - b_i)^2 } [/mm] + [mm] \sqrt{\sum_{i=0}^{\infty}(b_i-c_i)^2 } \ge \sqrt{\sum_{i=0}^{\infty}(a_i-c_i)^2 } [/mm] $
Das scheint doch (mit den gegebenen Voraussetzungen) eine ziemlich schwierige Angelegenheit zu sein.
Erste Frage:
Genügt es sich auf die Inhalte in den Klammern zu beschränken, d.h., genügt es zu zeigen:
[mm] $(a_i [/mm] - [mm] b_i)^2 [/mm] + [mm] (b_i [/mm] - [mm] c_i )^2 \ge (a_i [/mm] - [mm] c_i [/mm] ) ^2 $ ?
Selbst, wenn es genügt, wäre die Behauptung zwar deutlich einfacher aber noch immer schwierig genug.
Ich habe es ausmultipliziert, alles auf eine Seite gebracht und bekomme heraus:
[mm] $b_i [/mm] ^2 [mm] -b_i(a_i +c_i )-a_ic_i \ge [/mm] 0 $ und es sagt mir keine Voraussetzung, dass das tatsächlich stimmen muss, oder?
Kann mir da jemand weiterhelfen; offenbar ist hier Kreativität gefragt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:44 Mi 11.07.2012 | Autor: | SEcki |
> offenbar ist hier
> Kreativität gefragt.
Nein.
Weißt du denn, wie man für die euklidische Metrik die Dreiecksungleichung zeigt? Oder kannst du sie vorraussetzen? Dann musst du nur den Grenzübergang selber machen.
SEcki
|
|
|
|