www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenMinimales Polynom & Matrixgrad
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Minimales Polynom & Matrixgrad
Minimales Polynom & Matrixgrad < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimales Polynom & Matrixgrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Do 24.05.2007
Autor: Chichisama

Aufgabe
Sei A [mm] \in M_{n} [/mm] mit n [mm] \ge [/mm] 2 eine Matrix vom Rang 1. Beweisen Sie, dass [mm] \mu_{A} [/mm] den Grad 2 hat

Ich denke seit Tagen über diese Aufgabe nach, doch komme auf keine Lösung, da mir der entscheidende Zusammenhang zwischen Minimalpolynom und dem Grad der Matrix fehlt.
Vielleicht kann mir jemand einen Tipp geben, wie man an diese Aufgabe rangeht.

        
Bezug
Minimales Polynom & Matrixgrad: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Do 24.05.2007
Autor: generation...x

Es hat was den Eigenwerten zu tun: wieviele von 0 verschiedene Eigenwerte kann eine Matrix mit Rang 1 haben? Warum?
Dann kommt noch die 0 dazu. Wie sieht dann das Minimalpolynom aus?

Bezug
        
Bezug
Minimales Polynom & Matrixgrad: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 24.05.2007
Autor: angela.h.b.

Hallo,

ergänzend zu generation...x' Tip noch folgendes:

Wenn der Rang der Matrix =1 ist, ist die Matrix ähnlich zu [mm] \pmat{ a_{11} & 0 &..&0\\ a_{21} & 0 &..&0\\ ..\vdots & \vdots &\vdots&\vdots\\ a_{n1} & 0 &..&0} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Minimales Polynom & Matrixgrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Do 24.05.2007
Autor: Chichisama

Danke für die Tipps.

Eine Matrix vom Rang 1 hat nur einen Eigenwert [mm] \not= [/mm] 0.
Da immer nur die beiden ersten Summanden bei der Berechnung stehenbleiben. Allerdings weiß ich nicht wie ich das beweisen soll.

Zu Angela´s Tipp:
Ich weiß, dass das charakt. Polynom (und das Minimalpolynom) von zwei ähnlichen Matrizen gleich ist. Ich weiß nicht, ob ich mich irre, aber wenn ich das charakt. Polynom von der ähnl. Matrix ausrechnen würde, würde da ja [mm] x^{n} [/mm] rauskommen, da bis auf eine Spalte ja alles 0 ist.

Bezug
                        
Bezug
Minimales Polynom & Matrixgrad: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Do 24.05.2007
Autor: angela.h.b.


> Danke für die Tipps.
>  
> Eine Matrix vom Rang 1 hat nur einen Eigenwert [mm]\not=[/mm] 0.
>  Da immer nur die beiden ersten Summanden bei der
> Berechnung stehenbleiben. Allerdings weiß ich nicht wie ich
> das beweisen soll.
>
> Zu Angela´s Tipp:
>  Ich weiß, dass das charakt. Polynom (und das
> Minimalpolynom) von zwei ähnlichen Matrizen gleich ist.

Genau.

> Ich
> weiß nicht, ob ich mich irre, aber wenn ich das charakt.
> Polynom von der ähnl. Matrix ausrechnen würde, würde da ja
> [mm]x^{n}[/mm] rauskommen, da bis auf eine Spalte ja alles 0 ist.

Das ist nicht richtig. Rechne doch jetzt - als Experiment - man das charakteristische Polynom von [mm] \pmat{ 1 & 0&0 \\ 3 & 0&0\\ 4&0&0 } [/mm] aus.

Danach kriegst Du es für den allgemeinen Fall hin.

Gruß v. Angela

Bezug
                                
Bezug
Minimales Polynom & Matrixgrad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Fr 25.05.2007
Autor: Chichisama

Jetzt ist mir alles klar. Vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]