www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 13.04.2007
Autor: juerci

Aufgabe
Sei A eine quadratische Matrix über K. Zeige: Unter den Polynomen [mm] \{p(x) \in K[x] : p \not= 0 und p(A) = 0} [/mm] gibt es ein eindeutiges Polynom m(x) = [mm] x^{k} +a_{k-1}x^{k-1}+.....+a_{0} [/mm] von minimalen Grad k.

Die Eindeutigkeit is dabei kein Problem, wenn ich voraussetzen kann, dass es sicher normiert ist! Mein Problem liegt dabei, kann ich voraussetzen, dass es normiert ist, wie kann ich die Existenz nachweisen. Ich weiß, dass man das mit Idealen zeigen kann, aber das haben wir in der VO nie gemacht, gibt es dafür keinen alternativen Beweis?? DANKE IM VORAUS!!
MFG Jürgen

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 13.04.2007
Autor: SEcki


>  Die Eindeutigkeit is dabei kein Problem, wenn ich
> voraussetzen kann, dass es sicher normiert ist!

Hm, echt - wie machst du das? Also mir fällt da blos ein, dass der Polynomring ja ein Hauptidealring ist, daher folgt das.

>  Mein
> Problem liegt dabei, kann ich voraussetzen, dass es
> normiert ist, wie kann ich die Existenz nachweisen.

Schonmal von Cayley-Hamilton gehöhrt?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]