Minimalpolynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:15 Di 26.06.2007 | Autor: | Engel205 |
Kann mir bitte jemand das Minimalpolynom erklären? Wie kann ich anhand einer Matrix, dass Minimalpolynom bestimmen? Oder angenommen ich habe eine Matrix und ein Minimalpolynom gegeben, wie zeige ich dann, dass das Minimalpolynom der Matrix so gegeben ist?
zum Beispiel hier:
[mm] a_{o},.....,a_{n-1} [/mm] sind Elemente eines Körpers.
A = [mm] \pmat{ -a_{n-1} & 1 & 0 & 0 & ... & 0 \\ -a_{n-2} & 0 & 1 & 0 & ... & 0 \\ -a_{n-3} & 0 & 0 & 1 & ... & 0 \\ ................... \\ -a_{1} & 0 & 0 & 0 & ... & 1 \\ -a_{0} & 0 & 0 & 0 & ... & 0}
[/mm]
Wie zeige ich, dass Das Minimalpolynom dieser Matrix durch
f(x) = [mm] x^{n} [/mm] + [mm] a_{n-1}x^{n-1} [/mm] + [mm] a_{n-2}x^{n-2} [/mm] + ..... + [mm] a_{2}x² [/mm] + [mm] a_{1}x [/mm] + [mm] a_{0} [/mm]
gegeben ist?
Danke schonmal!
|
|
|
|
> Kann mir bitte jemand das Minimalpolynom erklären?
Das Minimalpolynom einer Matrix ist das Polynom kleinsten Grades (nicht identisch 0), das, angewand auf die Matrix, die Nullmatrix ergibt. Wäre z.B.
[mm]m_A(x)=m_k x^k+m_{k-1}x^{k-1}+\cdots+m_1 x + m_0[/mm] das Minmalpolynom der Matrix [mm]A[/mm], so muss also
[mm]m_A(A)=m_k A^k+m_{k-1}A^{k-1}+\cdot + m_1 A + m_0 = 0[/mm]
sein.
> Wie kann
> ich anhand einer Matrix, dass Minimalpolynom bestimmen?
> Oder angenommen ich habe eine Matrix und ein Minimalpolynom
> gegeben, wie zeige ich dann, dass das Minimalpolynom der
> Matrix so gegeben ist?
>
> zum Beispiel hier:
> [mm]a_{o},.....,a_{n-1}[/mm] sind Elemente eines Körpers.
>
> A = [mm]\pmat{ -a_{n-1} & 1 & 0 & 0 & ... & 0 \\ -a_{n-2} & 0 & 1 & 0 & ... & 0 \\ -a_{n-3} & 0 & 0 & 1 & ... & 0 \\ ................... \\ -a_{1} & 0 & 0 & 0 & ... & 1 \\ -a_{0} & 0 & 0 & 0 & ... & 0}[/mm]
>
> Wie zeige ich, dass Das Minimalpolynom dieser Matrix durch
> f(x) = [mm]x^{n}[/mm] + [mm]a_{n-1}x^{n-1}[/mm] + [mm]a_{n-2}x^{n-2}[/mm] + ..... +
> [mm]a_{2}x²[/mm] + [mm]a_{1}x[/mm] + [mm]a_{0}[/mm]
> gegeben ist?
Wenn Du das Minimalpolynom schon kennst musst Du nur zwei Dinge nachweisen:
1. dass tatsächlich [mm]f(A)=0[/mm] ist, und
2. dass es kein Nicht-Null-Polynom von kleinerem Grad als [mm]f[/mm] gibt, das diese Eigenschaft besitzt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:31 Mi 27.06.2007 | Autor: | Engel205 |
ok also 1. ist klar und bei 2. kann ich da nicht einfach schauen, ob kleinste Polynom darunter das nullpolynom ist? Weil dann ist ja klar, dass es kein anderes kleines Polynom mehr gibt...... oder? Wie mache ich das denn sonst?
|
|
|
|
|
> ok also 1. ist klar und bei 2. kann ich da nicht einfach
> schauen, ob kleinste Polynom darunter das nullpolynom ist?
> Weil dann ist ja klar, dass es kein anderes kleines Polynom
> mehr gibt...... oder? Wie mache ich das denn sonst?
Das Problem ist, zu zeigen, dass es in der Tat kein nicht-null Polynom [mm]g(x)[/mm] von kleinerem Grad als Deinem [mm]f(x)[/mm] mit der Eigenschaft [mm]g(A)=0[/mm] gibt. Das kann man nun nur nachweisen, indem man die genaue Struktur der Matrix [mm]A[/mm] ins Auge fasst.
Einen Weg hat Dir ja felixf in seiner Mitteilung schon aufgezeigt. Warum versuchst Du nicht seinem Vorschlag zu folgen und fragst nach Bedarf, wenn Du dabei auf konkrete Schwierigkeiten stösst, einfach nach?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:10 Di 26.06.2007 | Autor: | felixf |
Hallo!
> Kann mir bitte jemand das Minimalpolynom erklären? Wie kann
> ich anhand einer Matrix, dass Minimalpolynom bestimmen?
> Oder angenommen ich habe eine Matrix und ein Minimalpolynom
> gegeben, wie zeige ich dann, dass das Minimalpolynom der
> Matrix so gegeben ist?
>
> zum Beispiel hier:
> [mm]a_{o},.....,a_{n-1}[/mm] sind Elemente eines Körpers.
>
> A = [mm]\pmat{ -a_{n-1} & 1 & 0 & 0 & ... & 0 \\ -a_{n-2} & 0 & 1 & 0 & ... & 0 \\ -a_{n-3} & 0 & 0 & 1 & ... & 0 \\ ................... \\ -a_{1} & 0 & 0 & 0 & ... & 1 \\ -a_{0} & 0 & 0 & 0 & ... & 0}[/mm]
Falls du im Internet oder Buechern danach suchen willst: diese Matrix heisst auch `Begleitmatrix' (englisch: `companion matrix') vom Polynom [mm] $x^n [/mm] + [mm] a_{n-1} x^{n-1} [/mm] + [mm] \dots [/mm] + [mm] a_1 [/mm] x + [mm] a_0$.
[/mm]
> Wie zeige ich, dass Das Minimalpolynom dieser Matrix durch
> f(x) = [mm]x^{n}[/mm] + [mm]a_{n-1}x^{n-1}[/mm] + [mm]a_{n-2}x^{n-2}[/mm] + ..... +
> [mm]a_{2}x²[/mm] + [mm]a_{1}x[/mm] + [mm]a_{0}[/mm]
> gegeben ist?
Dass dieses Polynom gleich dem charakteristischen Polynom der Matrix ist kann man leicht per Induktion zeigen. (Das Minimalpolynom muss immer das charakteristische Polynom teilen, insofern ist das schonmal ein gutes Zeichen :) )
Wenn du schon etwas ueber die Jordansche Normalform weisst:
Du musst fuer jede Nullstelle [mm] $\lambda$ [/mm] (nicht nur im Koerper $K$ selber, sondern im Zerfaellungskoerper bzw. algebraischen Abschluss! oder du nimmst an, dass das Polynom in Linearfaktoren zerfaellt) des Polynoms zeigen, dass der Eigenraum zu diesem Eigenwert eindimensional ist. Daraus folgt, dass es zum Eigenwert nur ein Jordan-Kaestchen gibt und der Exponent im Minimalpolynom gleich dem Exponent im charakteristischen Polynom ist. Wenn du das gezeigt hast, folgt daraus also, dass das Minimalpolynom gleich dem charakteristischen Polynom ist.
Du musst also zeigen, dass [mm] $\dim \ker [/mm] (A - [mm] \lambda E_n) \le [/mm] 1$ ist fuer alle [mm] $\lambda$, [/mm] bzw. der Rang von $(A - [mm] \lambda E_n)$ [/mm] mindestens $n - 1$ ist. Und das kann man bei dieser Matrix ziemlich schnell sehen.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:12 Mi 27.06.2007 | Autor: | Engel205 |
Cool danke!
|
|
|
|