www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Minimalpolynom
Minimalpolynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Fr 07.03.2008
Autor: Palonina

Aufgabe
Die Matrix A  [mm] \in M_n(K) [/mm] erfülle [mm] A^2=A [/mm] und A habe den Rang r > 0. Dann gilt [mm] X_A(X)= [/mm]                    , und [mm] \mu_A(X) [/mm]  hat die Gestalt [mm] \mu_A(X)= [/mm]                    oder [mm] \mu_A(X)= [/mm]                                                               .


Hallo zusammen,

meine bisherigen Überlegungen: Eine Matrix A, die die Bedingung  erfüllt, kann nur die Einheitsmatrix E oder eine Matrix mit  lauter Nullen sein. Letzteres kommt wegen Rang r > 0 nicht in Frage.
Das charakteristische Polynom lautet dann [mm] (X-1)^n. [/mm] .

Aber wie ist das jetzt mit dem Minimalpolynom, ist das nicht eindeutig bestimmt? Und wenn ich A-E berechne, erhalte ich doch sofort 0, da nach meiner Annahme A=E ist.
Wie müssen die Minimalpolynome lauten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Minimalpolynom: Einwand
Status: (Antwort) fertig Status 
Datum: 15:10 Fr 07.03.2008
Autor: statler


> Die Matrix A  [mm]\in M_n(K)[/mm] erfülle [mm]A^2=A[/mm] und A habe den Rang
> r > 0. Dann gilt [mm]X_A(X)=[/mm]                    , und [mm]\mu_A(X)[/mm]  
> hat die Gestalt [mm]\mu_A(X)=[/mm]                    oder [mm]\mu_A(X)=[/mm]
>                                                            

Mahlzeit! Und [willkommenmr]

> meine bisherigen Überlegungen: Eine Matrix A, die die
> Bedingung  erfüllt, kann nur die Einheitsmatrix E oder eine
> Matrix mit  lauter Nullen sein. Letzteres kommt wegen Rang
> r > 0 nicht in Frage.

Diese Überlegungen können noch nicht ganz richtig sein. Denk mal an A =
[mm] \pmat{ 1 & 0 \\ 0 & 0 }. [/mm]

So weit zunächst.
Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]